Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochim Biophys Acta ; 1787(5): 328-34, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19413947

RESUMEN

In addition to its central role in cellular stress signaling, the tumor suppressor p53 modulates mitochondrial respiration through its nuclear transcription factor activity and localizes to mitochondria, where it enhances apoptosis and suppresses mitochondrial DNA (mtDNA) mutagenesis. Here we demonstrate a new conserved role for p53 in mtDNA copy number maintenance and mitochondrial reactive oxygen species (ROS) homeostasis. In mammals, mtDNA is present at thousands of copies per cell and is essential for normal development and cell function. We show that p53 null mouse and p53 knockdown human primary fibroblasts exhibit mtDNA depletion and decreased mitochondrial mass under normal culture growth conditions. This is accompanied by a reduction of the p53R2 subunit of ribonucleotide reductase mRNA and protein and of mitochondrial transcription factor A (mtTFA) at the protein level only. Finally, p53-depleted cells exhibit significant disruption of cellular ROS homeostasis, characterized by reduced mitochondrial and cellular superoxide levels and increased cellular hydrogen peroxide. Altogether, these results elucidate additional mitochondria-related functions for p53 and implicate mtDNA depletion and ROS alterations as potentially relevant to cellular transformation, cancer cell phenotypes, and the Warburg Effect.


Asunto(s)
ADN Mitocondrial/genética , Eliminación de Gen , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Cartilla de ADN , Fibroblastos/citología , Fibroblastos/fisiología , Homeostasis , Humanos , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/fisiología , Fosforilación Oxidativa , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/deficiencia
2.
J Clin Invest ; 117(9): 2723-34, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17786248

RESUMEN

Ataxia-telangiectasia mutated (ATM) kinase orchestrates nuclear DNA damage responses but is proposed to be involved in other important and clinically relevant functions. Here, we provide evidence for what we believe are 2 novel and intertwined roles for ATM: the regulation of ribonucleotide reductase (RR), the rate-limiting enzyme in the de novo synthesis of deoxyribonucleoside triphosphates, and control of mitochondrial homeostasis. Ataxia-telangiectasia (A-T) patient fibroblasts, wild-type fibroblasts treated with the ATM inhibitor KU-55933, and cells in which RR is inhibited pharmacologically or by RNA interference (RNAi) each lead to mitochondrial DNA (mtDNA) depletion under normal growth conditions. Disruption of ATM signaling in primary A-T fibroblasts also leads to global dysregulation of the R1, R2, and p53R2 subunits of RR, abrogation of RR-dependent upregulation of mtDNA in response to ionizing radiation, high mitochondrial transcription factor A (mtTFA)/mtDNA ratios, and increased resistance to inhibitors of mitochondrial respiration and translation. Finally, there are reduced expression of the R1 subunit of RR and tissue-specific alterations of mtDNA copy number in ATM null mouse tissues, the latter being recapitulated in tissues from human A-T patients. Based on these results, we propose that disruption of RR and mitochondrial homeostasis contributes to the complex pathology of A-T and that RR genes are candidate disease loci in mtDNA-depletion syndromes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Homeostasis , Mitocondrias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleótido Reductasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular , Proteínas de Ciclo Celular/genética , Células Cultivadas , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Dosificación de Gen , Regulación Enzimológica de la Expresión Génica , Humanos , Mitocondrias/genética , Mutación/genética , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba
3.
Mol Genet Metab ; 93(2): 160-71, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17981065

RESUMEN

Galactose is metabolized in humans and other species by the three-enzyme Leloir pathway comprised of galactokinase (GALK), galactose 1-P uridylyltransferase (GALT), and UDP-galactose 4'-epimerase (GALE). Impairment of GALT or GALE in humans results in the potentially lethal disorder galactosemia, and loss of either enzyme in yeast results in galactose-dependent growth arrest of cultures despite the availability of an alternate carbon source. In contrast, loss of GALK in humans is not life-threatening, and in yeast has no impact on the growth of cultures challenged with galactose. Further, the growth of both GALT-null and GALE-null yeast challenged with galactose is rescued by loss of GALK, thereby implicating the GALK reaction product, gal-1P, for a role in the galactose-sensitivity of both strains. However, the nature of that relationship has remained unclear. Here we have developed and applied a doxycycline-repressible allele of galactokinase to define the quantitative relationship between galactokinase activity, gal-1P accumulation, and growth arrest of galactose-challenged GALT or GALE-deficient yeast. Our results demonstrate a clear threshold relationship between gal-1P accumulation and galactose-mediated growth arrest in both GALT-null and GALE-null yeast, however, the threshold for the two strains is distinct. Further, we tested the galactose-sensitivity of yeast double-null for GALT and GALE, and found that although loss of GALT barely changed accumulation of gal-1P, it significantly lowered the accumulation of UDP-gal, and also dramatically rescued growth of the GALE-null cells. Together, these data suggest that while gal-1P alone may account for the galactose-sensitivity of GALT-null cells, other factors, likely to include UDP-gal accumulation, must contribute to the galactose-sensitivity of GALE-null cells.


Asunto(s)
Galactosafosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , UDPglucosa 4-Epimerasa/metabolismo , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/metabolismo , Doxiciclina/farmacología , Galactoquinasa/genética , Galactoquinasa/metabolismo , Galactosa/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , UDPglucosa 4-Epimerasa/genética , UDP-Glucosa-Hexosa-1-Fosfato Uridiltransferasa/genética
4.
Mol Biol Cell ; 16(6): 3010-8, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15829566

RESUMEN

How mitochondrial DNA (mtDNA) copy number is determined and modulated according to cellular demands is largely unknown. Our previous investigations of the related DNA helicases Pif1p and Rrm3p uncovered a role for these factors and the conserved Mec1/Rad53 nuclear checkpoint pathway in mtDNA mutagenesis and stability in Saccharomyces cerevisiae. Here, we demonstrate another novel function of this pathway in the regulation of mtDNA copy number. Deletion of RRM3 or SML1, or overexpression of RNR1, which recapitulates Mec1/Rad53 pathway activation, resulted in an approximately twofold increase in mtDNA content relative to the corresponding wild-type yeast strains. In addition, deletion of RRM3 or SML1 fully rescued the approximately 50% depletion of mtDNA observed in a pif1 null strain. Furthermore, deletion of SML1 was shown to be epistatic to both a rad53 and an rrm3 null mutation, placing these three genes in the same genetic pathway of mtDNA copy number regulation. Finally, increased mtDNA copy number via the Mec1/Rad53 pathway could occur independently of Abf2p, an mtDNA-binding protein that, like its metazoan homologues, is implicated in mtDNA copy number control. Together, these results indicate that signaling through the Mec1/Rad53 pathway increases mtDNA copy number by altering deoxyribonucleoside triphosphate pools through the activity of ribonucleotide reductase. This comprises the first linkage of a conserved signaling pathway to the regulation of mitochondrial genome copy number and suggests that homologous pathways in humans may likewise regulate mtDNA content under physiological conditions.


Asunto(s)
Proteínas de Ciclo Celular/genética , ADN Mitocondrial/genética , Proteínas Fúngicas/genética , Dosificación de Gen , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factor Trefoil-2
5.
Biochem Pharmacol ; 73(6): 760-72, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17188250

RESUMEN

Ribonucleotide reductase (RNR), which consists of R1 and R2 subunits, catalyzes a key step of deoxyribonucleoside triphosphate (dNTP) synthesis for DNA replication and repair. The R2 subunit is controlled in a cell cycle-specific manner for timely DNA synthesis and is negatively regulated by p53 in response to DNA damage. Herein we demonstrate that the presence of excess R2 subunits in p53(-/-) HCT-116 human colon cancer cells protects against DNA damage and replication stress. siRNA-mediated stable knockdown (>80%) of excess R2 subunits has no effect on proliferative growth but results in enhanced accumulation of gamma-H2Ax and delayed recovery from DNA lesions inflicted by exposure to cisplatin and Triapine. This accentuated induction of gamma-H2Ax in R2-knockdown cells is attributed to reduced ability to repair damaged DNA and overcome replication blockage. The lack of excess R2 subunits consequently augments chk1 activation and cdc25A degradation, causing impeded cell progression through the S phase and enhanced apoptosis in response to DNA damage and replication stress. In contrast, the level of R1 subunits appears to be limiting, since depletion of the R1 subunit directly activates the S phase checkpoint due to replication stress associated with impaired RNR activity. These findings suggest that excess R2 subunits facilitate DNA damage repair and recovery from replication stress through coordination with the S phase checkpoint in the absence of functional p53. Thus, the level of the R2 subunit constitutes an important determinant of the chemosensitivity of cancer cells and serves as a potential target for enhancement of DNA-damage based therapy.


Asunto(s)
Reparación del ADN , Replicación del ADN , Ribonucleótido Reductasas/fisiología , Fase S , Apoptosis , Cisplatino/farmacología , Daño del ADN , Células HCT116 , Histonas/biosíntesis , Humanos , Fosforilación , Proteína p53 Supresora de Tumor/fisiología
6.
Gene ; 354: 86-92, 2005 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-15907372

RESUMEN

With the exception of base excision repair, conserved pathways and mechanisms that maintain mitochondrial genome stability have remained largely undelineated. In the budding yeast, Saccharomyces cerevisiae, Pif1p is a unique DNA helicase that is localized both to the nucleus and mitochondria, where it is involved in maintaining DNA integrity. We previously elucidated a role for Pif1p in oxidative mtDNA damage resistance that appears to be distinct from its postulated function in mtDNA recombination. Strains lacking Pif1p (pif1Delta) exhibit an increased rate of formation of petite mutants (an indicator of mtDNA instability) and elevated mtDNA point mutagenesis. Here we show that deletion of the RRM3 gene, which encodes a DNA helicase closely related to Pif1p, significantly rescues the petite-induction phenotype of a pif1Delta strain. However, suppression of this phenotype was not accompanied by a corresponding decrease in mtDNA point mutagenesis. Instead, deletion of RRM3 alone resulted in an increase in mtDNA point mutagenesis that was synergistic with that caused by a pif1Delta mutation. In addition, we found that over-expression of RNR1, encoding a large subunit of ribonucleotide reductase (RNR), rescued the petite-induction phenotype of a pif1Delta mutation to a similar extent as deletion of RRM3. This, coupled to our finding that the Rad53p protein kinase is phosphorylated in the rrm3Delta pif1Delta double-mutant strain, leads us to conclude that one mechanism whereby deletion of RRM3 influences mtDNA stability is by modulating mitochondrial deoxynucleoside triphosphate pools. We propose that this is accomplished by signaling through the conserved Mec1/Rad53, S-phase checkpoint pathway to induce the expression and activity of RNR. Altogether, our results define a novel role for Rrm3p in mitochondrial function and indicate that Pif1p and Rrm3p influence a common process (or processes) involved in mtDNA replication, repair, or stability.


Asunto(s)
ADN Helicasas/genética , ADN Mitocondrial/genética , Mutación Puntual , Proteínas de Saccharomyces cerevisiae/genética , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , ADN Helicasas/metabolismo , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Supresión Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA