Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(48): 24359-24365, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31719194

RESUMEN

Thermosensitive transient receptor potential (TRP) ion channels detect changes in ambient temperature to regulate body temperature and temperature-dependent cellular activity. Rodent orthologs of TRP vanilloid 2 (TRPV2) are activated by nonphysiological heat exceeding 50 °C, and human TRPV2 is heat-insensitive. TRPV2 is required for phagocytic activity of macrophages which are rarely exposed to excessive heat, but what activates TRPV2 in vivo remains elusive. Here we describe the molecular mechanism of an oxidation-induced temperature-dependent gating of TRPV2. While high concentrations of H2O2 induce a modest sensitization of heat-induced inward currents, the oxidant chloramine-T (ChT), ultraviolet A light, and photosensitizing agents producing reactive oxygen species (ROS) activate and sensitize TRPV2. This oxidation-induced activation also occurs in excised inside-out membrane patches, indicating a direct effect on TRPV2. The reducing agent dithiothreitol (DTT) in combination with methionine sulfoxide reductase partially reverses ChT-induced sensitization, and the substitution of the methionine (M) residues M528 and M607 to isoleucine almost abolishes oxidation-induced gating of rat TRPV2. Mass spectrometry on purified rat TRPV2 protein confirms oxidation of these residues. Finally, macrophages generate TRPV2-like heat-induced inward currents upon oxidation and exhibit reduced phagocytosis when exposed to the TRP channel inhibitor ruthenium red (RR) or to DTT. In summary, our data reveal a methionine-dependent redox sensitivity of TRPV2 which may be an important endogenous mechanism for regulation of TRPV2 activity and account for its pivotal role for phagocytosis in macrophages.


Asunto(s)
Metionina/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Canales de Calcio/química , Canales de Calcio/genética , Canales de Calcio/metabolismo , Cloraminas/química , Escherichia coli/genética , Calor , Humanos , Peróxido de Hidrógeno/química , Macrófagos , Metionina/química , Mutación , Oxidantes/química , Oxidación-Reducción , Técnicas de Placa-Clamp , Fagocitosis , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/genética , Compuestos de Tosilo/química
2.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639197

RESUMEN

TRPV1 mediates pain occurring during sickling episodes in sickle cell disease (SCD). We examined if hemin, a porphyrin released during intravascular hemolysis modulates TRPV1. Calcium imaging and patch clamp were employed to examine effects of hemin on mouse dorsal root ganglion (DRG) neurons and HEK293t cells expressing TRPV1 and TRPA1. Hemin induced a concentration-dependent calcium influx in DRG neurons which was abolished by the unspecific TRP-channel inhibitor ruthenium red. The selective TRPV1-inhibitor BCTC or genetic deletion of TRPV1 only marginally impaired hemin-induced calcium influx in DRG neurons. While hTRPV1 expressed in HEK293 cells mediated a hemin-induced calcium influx which was blocked by BCTC, patch clamp recordings only showed potentiated proton- and heat-evoked currents. This effect was abolished by the PKC-inhibitor chelerythrine chloride and in protein kinase C (PKC)-insensitive TRPV1-mutants. Hemin-induced calcium influx through TRPV1 was only partly PKC-sensitive, but it was abolished by the reducing agent dithiothreitol (DTT). In contrast, hemin-induced potentiation of inward currents was not reduced by DTT. Hemin also induced a redox-dependent calcium influx, but not inward currents on hTRPA1. Our data suggest that hemin induces a PKC-mediated sensitization of TRPV1. However, it also acts as a photosensitizer when exposed to UVA-light used for calcium imaging. The resulting activation of redox-sensitive ion channels such as TRPV1 and TRPA1 may be an in vitro artifact with limited physiological relevance.


Asunto(s)
Ganglios Espinales/metabolismo , Hemina/farmacología , Neuronas/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/fisiología , Animales , Calcio/metabolismo , Ganglios Espinales/efectos de los fármacos , Células HEK293 , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Canal Catiónico TRPA1/efectos de los fármacos , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/genética
3.
FASEB J ; 33(9): 10257-10268, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31207191

RESUMEN

Overdosing of the analgesic acetaminophen (APAP) is one of the most common causes for acute liver failure in modern countries. Although the exact molecular mechanisms mediating hepatocellular necrosis are still elusive, it is preceded by oxidative stress triggered by excessive levels of the metabolite N-acetyl-para-benzoquinone imine (NAPQI). Here, we describe the role of the redox-sensitive transient receptor potential (TRP) ion channel TRP vanilloid 4 (TRPV4) for APAP-induced hepatoxicity. Both pharmacological inhibition and genetic deletion of TRPV4 ameliorate APAP-induced necrosis in mouse and human hepatocytes in vitro. Liver injury caused by a systemic overdose of APAP is reduced in TRPV4-deficient mice and in wild-type mice treated with a TRPV4 inhibitor. The reduction of hepatotoxicity accomplished by systemic TRPV4 inhibition is comparable to the protective effects of the antioxidant N-acetyl-cysteine. Although TRPV4 does not modulate intrahepatic levels of glutathione, both its inhibition and genetic deletion attenuate APAP-induced oxidative and nitrosative stress as well as mitochondrial membrane depolarization. NAPQI evokes a calcium influx by activating heterologously expressed TRPV4 channels and endogenous TRPV4 channels in hepatoma cells but not in primary mouse hepatocytes. Taken together, our data suggest that TRPV4 mediates APAP-induced hepatotoxicity and thus may be a suitable target for treatment of this critical side effect.-Echtermeyer, F., Eberhardt, M., Risser, L., Herzog, C., Gueler, F., Khalil, M., Engel, M., Vondran, F., Leffler, A. Acetaminophen-induced liver injury is mediated by the ion channel TRPV4.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/patología , Canales Catiónicos TRPV/fisiología , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Canales Catiónicos TRPV/antagonistas & inhibidores
4.
Mol Pain ; 14: 1744806918811699, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30345869

RESUMEN

BACKGROUND: Etomidate is a preferred drug for the induction of general anesthesia in cardiovascular risk patients. As with propofol and other perioperatively used anesthetics, the application of aqueous etomidate formulations causes an intensive burning pain upon injection. Such algogenic properties of etomidate have been attributed to the solubilizer propylene glycol which represents 35% of the solution administered clinically. The aim of this study was to investigate the underlying molecular mechanisms which lead to injection pain of aqueous etomidate formulations. RESULTS: Activation of the nociceptive transient receptor potential (TRP) ion channels TRPA1 and TRPV1 was studied in a transfected HEK293t cell line by whole-cell voltage clamp recordings of induced inward ion currents. Calcium influx in sensory neurons of wild-type and trp knockout mice was ratiometrically measured by Fura2-AM staining. Stimulated calcitonin gene-related peptide release from mouse sciatic nerves was detected by enzyme immunoassay. Painfulness of different etomidate formulations was tested in a translational human pain model. Etomidate as well as propylene glycol proved to be effective agonists of TRPA1 and TRPV1 ion channels at clinically relevant concentrations. Etomidate consistently activated TRPA1, but there was also evidence for a contribution of TRPV1 in dependence of drug concentration ranges and species specificities. Distinct N-terminal cysteine and lysine residues seemed to mediate gating of TRPA1, although the electrophile scavenger N-acetyl-L-cysteine did not prevent its activation by etomidate. Propylene glycol-induced activation of TRPA1 and TRPV1 appeared independent of the concomitant high osmolarity. Intradermal injections of etomidate as well as propylene glycol evoked severe burning pain in the human pain model that was absent with emulsification of etomidate. CONCLUSIONS: Data in our study provided evidence that pain upon injection of clinical aqueous etomidate formulations is not an unspecific effect of hyperosmolarity but rather due to a specific action mediated by activated nociceptive TRPA1 and TRPV1 ion channels in sensory neurons.


Asunto(s)
Etomidato/farmacología , Dolor/fisiopatología , Canales Catiónicos TRPV/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Dolor/inducido químicamente , Dolor/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
5.
J Biol Chem ; 290(24): 15185-96, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25903127

RESUMEN

Streptozotocin (STZ)-induced diabetes is the most commonly used animal model of diabetes. Here, we have demonstrated that intraplantar injections of low dose STZ evoked acute polymodal hypersensitivities in mice. These hypersensitivities were inhibited by a TRPA1 antagonist and were absent in TRPA1-null mice. In wild type mice, systemic STZ treatment (180 mg/kg) evoked a loss of cold and mechanical sensitivity within an hour of injection, which lasted for at least 10 days. In contrast, Trpa1(-/-) mice developed mechanical, cold, and heat hypersensitivity 24 h after STZ. The TRPA1-dependent sensory loss produced by STZ occurs before the onset of diabetes and may thus not be readily distinguished from the similar sensory abnormalities produced by the ensuing diabetic neuropathy. In vitro, STZ activated TRPA1 in isolated sensory neurons, TRPA1 cell lines, and membrane patches. Mass spectrometry studies revealed that STZ oxidizes TRPA1 cysteines to disulfides and sulfenic acids. Furthermore, incubation of tyrosine with STZ resulted in formation of dityrosine, suggesting formation of peroxynitrite. Functional analysis of TRPA1 mutants showed that cysteine residues that were oxidized by STZ were important for TRPA1 responsiveness to STZ. Our results have identified oxidation of TRPA1 cysteine residues, most likely by peroxynitrite, as a novel mechanism of action of STZ. Direct stimulation of TRPA1 complicates the interpretation of results from STZ models of diabetic sensory neuropathy and strongly argues that more refined models of diabetic neuropathy should replace the use of STZ.


Asunto(s)
Ácido Peroxinitroso/metabolismo , Estreptozocina/farmacología , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Analgésicos/farmacología , Animales , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxidación-Reducción , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/genética
6.
EMBO J ; 31(19): 3795-808, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-22850668

RESUMEN

Ciguatoxins are sodium channel activator toxins that cause ciguatera, the most common form of ichthyosarcotoxism, which presents with peripheral sensory disturbances, including the pathognomonic symptom of cold allodynia which is characterized by intense stabbing and burning pain in response to mild cooling. We show that intraplantar injection of P-CTX-1 elicits cold allodynia in mice by targeting specific unmyelinated and myelinated primary sensory neurons. These include both tetrodotoxin-resistant, TRPA1-expressing peptidergic C-fibres and tetrodotoxin-sensitive A-fibres. P-CTX-1 does not directly open heterologously expressed TRPA1, but when co-expressed with Na(v) channels, sodium channel activation by P-CTX-1 is sufficient to drive TRPA1-dependent calcium influx that is responsible for the development of cold allodynia, as evidenced by a large reduction of excitatory effect of P-CTX-1 on TRPA1-deficient nociceptive C-fibres and of ciguatoxin-induced cold allodynia in TRPA1-null mutant mice. Functional MRI studies revealed that ciguatoxin-induced cold allodynia enhanced the BOLD (Blood Oxygenation Level Dependent) signal, an effect that was blunted in TRPA1-deficient mice, confirming an important role for TRPA1 in the pathogenesis of cold allodynia.


Asunto(s)
Ciguatoxinas/toxicidad , Dolor/inducido químicamente , Animales , Frío , Hiperalgesia/inducido químicamente , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Wistar , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/genética
7.
J Pharmacol Exp Ther ; 359(1): 18-25, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27457427

RESUMEN

Propacetamol (PPCM) is a prodrug of paracetamol (PCM), which was generated to increase water solubility of PCM for intravenous delivery. PPCM is rapidly hydrolyzed by plasma esterases to PCM and diethylglycine and shares some structural and metabolic properties with lidocaine. Although PPCM is considered to be comparable to PCM regarding its analgesic properties, injection pain is a common side effect described for PPCM but not PCM. Injection pain is a frequent and unpleasant side effect of numerous drugs in clinical use, and previous reports have indicated that the ligand gated ion channels transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) can mediate this effect on sensory neurons. This study aimed to investigate molecular mechanisms by which PPCM, in contrast to PCM, causes injection pain. Therefore, human TRPV1 and TRPA1 receptors were expressed in human embryonic kidney 293 cells and investigated by means of whole-cell patch clamp and ratiometric calcium imaging. PPCM (but not PCM) activated TRPV1, sensitized heat-induced currents, and caused an increase in intracellular calcium. In TRPA1-expressing cells however, both PPCM and PCM evoked calcium responses but failed to induce inward currents. Intracutaneous injection of PPCM, but not of PCM, in human volunteers induced an intense and short-lasting pain and an increase in superficial blood flow, indicating activation of nociceptive C fibers and subsequent neuropeptide release. In conclusion, activation of human TRPV1 by PPCM seems to be a relevant mechanism for induction of pain upon intracutaneous injection and thus also for pain reported as an adverse side effect upon intravenous administration.


Asunto(s)
Acetaminofén/análogos & derivados , Dolor/etiología , Dolor/metabolismo , Canales Catiónicos TRPV/metabolismo , Acetaminofén/administración & dosificación , Acetaminofén/farmacología , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Inyecciones/efectos adversos , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dolor/patología , Dolor/fisiopatología , Flujo Sanguíneo Regional/efectos de los fármacos , Piel/irrigación sanguínea , Canales de Sodio Activados por Voltaje/metabolismo
8.
Anesthesiology ; 124(5): 1153-65, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26859646

RESUMEN

BACKGROUND: The relatively membrane-impermeable lidocaine derivative QX-314 has been reported to permeate the ion channels transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential cation channel, subfamily A, member 1 (TRPA1) to induce a selective inhibition of sensory neurons. This approach is effective in rodents, but it also seems to be associated with neurotoxicity. The authors examined whether the human isoforms of TRPV1 and TRPA1 allow intracellular entry of QX-314 to mediate sodium channel inhibition and cytotoxicity. METHODS: Human embryonic kidney 293 (HEK-293) cells expressing wild-type or mutant human (h) TRPV1 or TRPA1 constructs as well as the sodium channel Nav1.7 were investigated by means of patch clamp and ratiometric calcium imaging. Cytotoxicity was examined by flow cytometry. RESULTS: Activation of hTRPA1 by carvacrol and hTRPV1 by capsaicin produced a QX-314-independent reduction of sodium current amplitudes. However, permeation of QX-314 through hTRPV1 or hTRPA1 was evident by a concentration-dependent, use-dependent inhibition of Nav1.7 activated at 10 Hz. Five and 30 mM QX-314 activated hTRPV1 via mechanisms involving the intracellular vanilloid-binding domain and hTRPA1 via unknown mechanisms independent of intracellular cysteins. Expression of hTRPV1, but not hTRPA1, was associated with a QX-314-induced cytotoxicity (viable cells 48 ± 5% after 30 mM QX-314) that was ameliorated by the TRPV1 antagonist 4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide (viable cells 81 ± 5%). CONCLUSIONS: The study data demonstrate that QX-314 directly activates and permeates the human isoforms of TRPV1 and TRPA1 to induce inhibition of sodium channels, but also a TRPV1-dependent cytotoxicity. These results warrant further validation of this approach in more intact preparations and may be valuable for the development of this concept into clinical practice.


Asunto(s)
Anestésicos Locales/farmacología , Canales de Calcio/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Lidocaína/análogos & derivados , Proteínas del Tejido Nervioso/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Canales Catiónicos TRPV/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/efectos de los fármacos , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Lidocaína/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Proteínas del Tejido Nervioso/agonistas , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/agonistas , Canales de Potencial de Receptor Transitorio/agonistas
9.
J Biol Chem ; 289(4): 1971-80, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24311784

RESUMEN

Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited "paroxysmal extreme pain disorder" (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079-11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T. Therefore, persistent and resurgent currents are likely to determine whether a mutation in Nav1.7 leads to IEM or PEPD.


Asunto(s)
Sustitución de Aminoácidos , Eritromelalgia/metabolismo , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/metabolismo , Recto/anomalías , Eritromelalgia/genética , Eritromelalgia/patología , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Células HEK293 , Humanos , Transporte Iónico/genética , Masculino , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/genética , Dolor/patología , Recto/metabolismo , Recto/patología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología
10.
J Biol Chem ; 288(28): 20280-92, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23709225

RESUMEN

The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Protones , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Sitios de Unión/genética , Calcio/metabolismo , Canales de Calcio/genética , Capsaicina/farmacología , Células Cultivadas , Cimenos , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ionomicina/farmacología , Macaca mulatta , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoterpenos/farmacología , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Potasio/farmacología , Ratas , Especificidad de la Especie , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética
11.
Handb Exp Pharmacol ; 221: 91-110, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24737233

RESUMEN

Mutations in voltage-gated sodium channels, especially Nav1.7, can cause the genetic pain syndromes inherited erythromelalgia, small fiber neuropathy, paroxysmal extreme pain disorder, and chronic insensitivity to pain. Functional analysis of these mutations offers the possibility of understanding the potential pathomechanisms of these disease patterns and also may help to explicate the molecular mechanisms underlying pain in normal conditions. The mutations are distributed over the whole channel protein, but nevertheless induce similar changes for each pain syndrome. In this review we focus on their impact on sodium channel gating, which may be conferred via modulation of (1) conformation (affecting all gating characteristics); (2) the amount of voltage-sensing charges (affecting mainly activation); (3) interaction within the protein (e.g., binding of the inactivation linker); and (4) interaction with other proteins (e.g., for generation of resurgent currents). Understanding the molecular basis for each gating mode and its impact on cellular excitability and nociception in each disease type may provide a basis for development of more specific and effective therapeutic tools.


Asunto(s)
Activación del Canal Iónico , Nociceptores/metabolismo , Dolor/metabolismo , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Humanos , Cinética , Potenciales de la Membrana , Dolor/genética , Dolor/fisiopatología , Umbral del Dolor , Transducción de Señal , Síndrome , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/genética
12.
J Biol Chem ; 287(34): 28291-306, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22740698

RESUMEN

Neuropathic pain can develop as an agonizing sequela of diabetes mellitus and chronic uremia. A chemical link between both conditions of altered metabolism is the highly reactive compound methylglyoxal (MG), which accumulates in all cells, in particular neurons, and leaks into plasma as an index of the severity of the disorder. The electrophilic structure of this cytotoxic ketoaldehyde suggests TRPA1, a receptor channel deeply involved in inflammatory and neuropathic pain, as a molecular target. We demonstrate that extracellularly applied MG accesses specific intracellular binding sites of TRPA1, activating inward currents and calcium influx in transfected cells and sensory neurons, slowing conduction velocity in unmyelinated peripheral nerve fibers, and stimulating release of proinflammatory neuropeptides from and action potential firing in cutaneous nociceptors. Using a model peptide of the N terminus of human TRPA1, we demonstrate the formation of disulfide bonds based on MG-induced modification of cysteines as a novel mechanism. In conclusion, MG is proposed to be a candidate metabolite that causes neuropathic pain in metabolic disorders and thus is a promising target for medicinal chemistry.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/metabolismo , Nociceptores/metabolismo , Piruvaldehído/metabolismo , Canales Catiónicos TRPC/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Potenciales de Acción , Animales , Sitios de Unión , Canales de Calcio/genética , Células HEK293 , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Neuralgia/dietoterapia , Neuralgia/genética , Neuralgia/patología , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/metabolismo , Nociceptores/patología , Ratas , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/genética , Canales de Potencial de Receptor Transitorio/genética
13.
J Pharmacol Exp Ther ; 347(2): 529-39, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23926288

RESUMEN

High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.


Asunto(s)
Ganglios Sensoriales/efectos de los fármacos , Nicotina/farmacología , Receptores Nicotínicos/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Tráquea/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Ganglios Sensoriales/metabolismo , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nicotina/administración & dosificación , Receptores Nicotínicos/genética , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/genética , Tráquea/metabolismo , Canales de Potencial de Receptor Transitorio/genética
14.
Br J Pharmacol ; 180(17): 2214-2229, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36928865

RESUMEN

BACKGROUND AND PURPOSE: Itch is associated with several pathologies and is a common drug-induced side effect. Chloroquine (CQ) is reported to induce itch by activating the Mas-related G protein-coupled receptor MrgprA3 and subsequently TRPA1. In this study, we demonstrate that CQ employs at least two MrgprA3-independent mechanisms to activate or sensitize TRPA1 and TRPV1. EXPERIMENTAL APPROACH: Patch clamp and calcium imaging were utilized to examine effects of CQ on TRPA1 and TRPV1 expressed in HEK 293T cells. KEY RESULTS: In calcium imaging, CQ induces a concentration-dependent but MrgprA3-independent activation of TRPA1 and TRPV1. Although CQ itself inhibits TRPA1 and TRPV1 in patch clamp recordings, co-application of CQ and ultraviolet A (UVA) light evokes membrane currents through both channels. This effect is inhibited by the reducing agent dithiothreitol (DTT) and is reduced on mutants lacking cysteine residues accounting for reactive oxygen species (ROS) sensitivity. The combination of CQ and UVA light triggers an accumulation of intracellular ROS, removes fast inactivation of voltage-gated sodium currents and activates TRPV2. On the other hand, CQ is a weak base and induces intracellular alkalosis. Intracellular alkalosis can activate TRPA1 and TRPV1, and CQ applied at alkaline pH values indeed activates both channels. CONCLUSION AND IMPLICATIONS: Our data reveal novel pharmacological properties of CQ, allowing activation of TRPA1 and TRPV1 via photosensitization as well as intracellular alkalosis. These findings add more complexity to the commonly accepted dogma that CQ-induced itch is specifically mediated by MrgprA3 coupling to TRPA1.


Asunto(s)
Cloroquina , Canales de Potencial de Receptor Transitorio , Humanos , Cloroquina/efectos adversos , Canal Catiónico TRPA1 , Células Receptoras Sensoriales , Calcio/metabolismo , Especies Reactivas de Oxígeno , Prurito/tratamiento farmacológico , Canales Catiónicos TRPV/fisiología , Ganglios Espinales/metabolismo
15.
Mol Pain ; 8: 69, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22978421

RESUMEN

BACKGROUND: Gain-of-function mutations of the nociceptive voltage-gated sodium channel Nav1.7 lead to inherited pain syndromes, such as paroxysmal extreme pain disorder (PEPD). One characteristic of these mutations is slowed fast-inactivation kinetics, which may give rise to resurgent sodium currents. It is long known that toxins from Anemonia sulcata, such as ATX-II, slow fast inactivation and skin contact for example during diving leads to various symptoms such as pain and itch. Here, we investigated if ATX-II induces resurgent currents in sensory neurons of the dorsal root ganglion (DRGs) and how this may translate into human sensations. RESULTS: In large A-fiber related DRGs ATX-II (5 nM) enhances persistent and resurgent sodium currents, but failed to do so in small C-fiber linked DRGs when investigated using the whole-cell patch-clamp technique. Resurgent currents are thought to depend on the presence of the sodium channel ß4-subunit. Using RT-qPCR experiments, we show that small DRGs express significantly less ß4 mRNA than large sensory neurons. With the ß4-C-terminus peptide in the pipette solution, it was possible to evoke resurgent currents in small DRGs and in Nav1.7 or Nav1.6 expressing HEK293/N1E115 cells, which were enhanced by the presence of extracellular ATX-II. When injected into the skin of healthy volunteers, ATX-II induces painful and itch-like sensations which were abolished by mechanical nerve block. Increase in superficial blood flow of the skin, measured by Laser doppler imaging is limited to the injection site, so no axon reflex erythema as a correlate for C-fiber activation was detected. CONCLUSION: ATX-II enhances persistent and resurgent sodium currents in large diameter DRGs, whereas small DRGs depend on the addition of ß4-peptide to the pipette recording solution for ATX-II to affect resurgent currents. Mechanical A-fiber blockade abolishes all ATX-II effects in human skin (e.g. painful and itch-like paraesthesias), suggesting that it mediates its effects mainly via activation of A-fibers.


Asunto(s)
Venenos de Cnidarios/toxicidad , Activación del Canal Iónico/efectos de los fármacos , Fibras Nerviosas Mielínicas/patología , Dolor/patología , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/metabolismo , Animales , Venenos de Cnidarios/administración & dosificación , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Ganglios Espinales/fisiopatología , Células HEK293 , Humanos , Inyecciones Intradérmicas , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/metabolismo , Dolor/fisiopatología , Péptidos/toxicidad , Prurito/patología , Prurito/fisiopatología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Factores de Tiempo
16.
Gastroenterology ; 141(4): 1346-58, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21763243

RESUMEN

BACKGROUND & AIMS: The neuropeptides calcitonin gene-related peptide (CGRP) and substance P, and calcium channels, which control their release from extrinsic sensory neurons, have important roles in experimental colitis. We investigated the mechanisms of colitis in 2 different models, the involvement of the irritant receptor transient receptor potential of the ankyrin type-1 (TRPA1), and the effects of CGRP and substance P. METHODS: We used calcium-imaging, patch-clamp, and neuropeptide-release assays to evaluate the effects of 2,4,6-trinitrobenzene-sulfonic-acid (TNBS) and dextran-sulfate-sodium-salt on neurons. Colitis was induced in wild-type, knockout, and desensitized mice. RESULTS: TNBS induced TRPA1-dependent release of colonic substance P and CGRP, influx of Ca2+, and sustained ionic inward currents in colonic sensory neurons and transfected HEK293t cells. Analysis of mutant forms of TRPA1 revealed that TNBS bound covalently to cysteine (and lysine) residues in the cytoplasmic N-terminus. A stable sulfinic acid transformation of the cysteine-SH group, shown by mass spectrometry, might contribute to sustained sensitization of TRPA1. Mice with colitis had increased colonic neuropeptide release, mediated by TRPA1. Endogenous products of inflammatory lipid peroxidation also induced TRPA1-dependent release of colonic neuropeptides; levels of 4-hydroxy-trans-2-nonenal increased in each model of colitis. Colitis induction by TNBS or dextran-sulfate-sodium-salt was inhibited or reduced in TRPA1-/- mice and by 2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopro-pylphenyl)-acetamide, a pharmacologic inhibitor of TRPA1. Substance P had a proinflammatory effect that was dominant over CGRP, based on studies of knockout mice. Ablation of extrinsic sensory neurons prevented or attenuated TNBS-induced release of neuropeptides and both forms of colitis. CONCLUSIONS: Neuroimmune interactions control intestinal inflammation. Activation and sensitization of TRPA1 and release of substance P induce and maintain colitis in mice.


Asunto(s)
Colitis/metabolismo , Colon/metabolismo , Sustancia P/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Aldehídos/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Colitis/inducido químicamente , Colitis/genética , Colitis/patología , Colon/efectos de los fármacos , Colon/inervación , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Diterpenos/farmacología , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido , Potenciales de la Membrana , Ratones , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Sustancia P/deficiencia , Sustancia P/genética , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Transfección , Canales de Potencial de Receptor Transitorio/deficiencia , Canales de Potencial de Receptor Transitorio/genética , Ácido Trinitrobencenosulfónico
17.
Headache ; 52(9): 1411-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22788114

RESUMEN

Calcitonin gene-related peptide (CGRP) and metabolic products of nitric oxide (NO) are increased in jugular venous plasma during migraine attacks and other primary headaches. Patients suffering from primary headaches are particularly sensitive to CGRP and NO donors responding with delayed headaches to an infusion of either of these substances. Accordingly, both CGRP and NO are considered as key mediators in migraine, and clinical trials have shown that inhibitors of CGRP receptors and NO synthase are effective in treating migraine. There is an implicit understanding that CGRP and NO systems interact, and here, we review the body of preclinical work on these systems focusing on the trigeminovascular system in migraine. NO derives from various cell types via 3 isoforms of NO synthase, whereas CGRP is produced from a subset of trigeminal afferents. In rodents, NO donors cause activity alterations on different levels of the trigeminal system including enhancement of CGRP release, which in turn results in arterial vasodilatation and possibly mast cell degranulation in the meninges. The activity of spinal trigeminal neurons, which is a sensitive integrative measure for trigeminal activity, is partly under the control of CGRP and NO. Both mediators facilitate nociceptive transmission, possibly via presynaptic mechanisms. These functions are supported by immunolocalization of CGRP receptor components on 3 trigeminovascular levels: cranial dura mater, trigeminal ganglion, and spinal trigeminal nucleus. Current data support a relationship of CGRP and NO actions on all levels of the trigeminovascular system and emphasize central CGRP receptors as possible therapeutic targets.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Cefalea/metabolismo , Cefalea/fisiopatología , Óxido Nítrico/metabolismo , Animales , Humanos , Ganglio del Trigémino/metabolismo , Ganglio del Trigémino/fisiopatología , Nervio Trigémino/metabolismo , Nervio Trigémino/fisiopatología
18.
Neurosci Lett ; 789: 136878, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36115537

RESUMEN

The naturally occurring coumarin osthole has antipruritic properties, and recent reports suggest that this effect is due an inhibition or desensitization of the cation channels TRPV1 and TRPV3. Osthole was also suggested to activate TRPA1, an effect that should rather be pruritic than antipruritic. Here we characterized the effects of osthole on TRPA1 by means of ratiometric calcium imaging and patch clamp electrophysiology. In HEK 293 expressing human (h) TRPA1, osthole induced a concentration-dependent increase in intracellular calcium that was inhibited by the TRPA1-inhibitor A967079. In mouse dorsal root ganglion (DRG) cells, osthole induced a strong calcium-influx that was partly mediated by TRPA1. Osthole evoked fully reversible membrane currents in whole-cell as well as cell-free inside-out recordings on hTRPA1. Osthole failed to activate the mutant hTRPA1-S873V/T874L, a previously described binding site for the non-electrophilic TRPA1-agonists menthol and carvacrol. The combined application of osthole and carvacrol diminished channel activation, suggesting a competitive binding. Finally, osthole failed to activate TRPM8 and TRPV4 but induced a modest activation of hTRPV1 expressed in HEK 293 cells. We conclude that osthole is a potent non-electrophilic agonist of TRPA1. The relevance of this property for the antipruritic effects needs to be further explored.


Asunto(s)
Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio , Animales , Antipruriginosos/farmacología , Calcio/metabolismo , Cumarinas/farmacología , Cimenos , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Mentol/farmacología , Ratones , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
19.
J Biol Chem ; 285(45): 34781-92, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20826794

RESUMEN

Anesthetic agents can induce a paradox activation and sensitization of nociceptive sensory neurons and, thus, potentially facilitate pain processing. Here we identify distinct molecular mechanisms that mediate an activation of sensory neurons by 2,6-diisopropylphenol (propofol), a commonly used intravenous anesthetic known to elicit intense pain upon injection. Clinically relevant concentrations of propofol activated the recombinant transient receptor potential (TRP) receptors TRPA1 and TRPV1 heterologously expressed in HEK293t cells. In dorsal root ganglion (DRG) neurons, propofol-induced activation correlated better to expression of TRPA1 than of TRPV1. However, pretreatment with the protein kinase C activator 4ß-phorbol 12-myristate 13-acetate (PMA) resulted in a significantly sensitized propofol-induced activation of TRPV1 in DRG neurons as well as in HEK293t cells. Pharmacological and genetic silencing of both TRPA1 and TRPV1 only partially abrogated propofol-induced responses in DRG neurons. The remaining propofol-induced activation was abolished by the selective γ-aminobutyric acid, type A (GABA(A)) receptor antagonist picrotoxin. Propofol but not GABA evokes a release of calcitonin gene-related peptide, a key component of neurogenic inflammation, from isolated peripheral nerves of wild-type but not TRPV1 and TRPA1-deficient mice. Moreover, propofol but not GABA induced an intense pain upon intracutaneous injection. As both the release of calcitonin gene-related peptide and injection pain by propofol seem to be independent of GABA(A) receptors, our data identify TRPV1 and TRPA1 as key molecules for propofol-induced excitation of sensory neurons. This study warrants further investigations into the role of anesthetics to induce nociceptor sensitization and to foster postoperative pain.


Asunto(s)
Anestésicos Intravenosos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Nociceptores/metabolismo , Propofol/farmacología , Receptores de GABA-A , Canales Catiónicos TRPV/biosíntesis , Canales de Potencial de Receptor Transitorio/biosíntesis , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Antagonistas del GABA/farmacología , Ganglios Espinales , Células HEK293 , Humanos , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Picrotoxina/farmacología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Canal Catiónico TRPA1 , Canales Catiónicos TRPV/genética , Canales de Potencial de Receptor Transitorio/genética
20.
Cell Calcium ; 96: 102391, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33752082

RESUMEN

Redox-sensitivity is a common property of several transient receptor potential (TRP) ion channels. Oxidants and UVA-light activate TRPV2 by oxidizing methionine pore residues which are conserved in the capsaicin-receptor TRPV1. However, the redox-sensitivity of TRPV1 is regarded to depend on intracellular cysteine residues. In this study we examined if TRPV1 is gated by UVA-light, and if the conserved methionine residues are relevant for redox-sensitivity of TRPV1. Patch clamp recordings were performed to explore wildtype (WT) and mutants of human TRPV1 (hTRPV1). UVA-light induced hTRPV1-mediated membrane currents and potentiated both proton- and heat-evoked currents. The reducing agent dithiothreitol (DTT) prevented and partially reversed UVA-light induced sensitization of hTRPV1. UVA-light induced sensitization was reduced in the mutant hTRPV1-C158A/C387S/C767S (hTRPV1-3C). The remaining sensitivity to UVA-light of hTRRPV1-3C was not further reduced upon exchange of the methionine residues M568 and M645. While UVA-induced sensitization was reduced in the protein kinase C-insensitive mutant hTRPV1-S502A/S801A, the PKC-inhibitors chelerythrine chloride, staurosporine and Gö6976 did not reduce UVA-induced effects on hTRPV1-WT. While hTRPV1-3C was insensitive to the cysteine-selective oxidant diamide, it displayed a residual sensitivity to H2O2 and chloramine-T. However, the exchange of M568 and M645 in hTRPV1-3C did not further reduce these effects. Our data demonstrate that oxidants and UVA-light gate hTRPV1 by cysteine-dependent as well as cysteine-independent mechanisms. In contrast to TRPV2, the methionine residues 568 and 645 seem to be of limited relevance for redox-sensitivity of hTRPV1. Finally, UVA-light induced gating of hTRPV1 does not seem to require activation of protein kinase C.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Oxidantes/farmacología , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/efectos de la radiación , Rayos Ultravioleta , Cloraminas/farmacología , Células HEK293 , Humanos , Peróxido de Hidrógeno/farmacología , Activación del Canal Iónico/fisiología , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Canales Catiónicos TRPV/agonistas , Compuestos de Tosilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA