Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(23): e2407437121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814864

RESUMEN

The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.


Asunto(s)
COVID-19 , Inmunidad Innata , SARS-CoV-2 , Serina Endopeptidasas , Internalización del Virus , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , SARS-CoV-2/metabolismo , Humanos , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , COVID-19/virología , COVID-19/inmunología , COVID-19/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Replicación Viral , Animales , Endocitosis , Células HEK293 , Chlorocebus aethiops , Citología
2.
Transfusion ; 60(3): 561-574, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32086956

RESUMEN

BACKGROUND: To date, several cases of transfusion-transmitted ZIKV infections have been confirmed. Multiple studies detected prolonged occurrence of ZIKV viral RNA in whole blood as compared to plasma samples indicating potential ZIKV interaction with hematopoietic cells. Also, infection of cells from the granulocyte/macrophage lineage has been demonstrated. Patients may develop severe thrombocytopenia, microcytic anemia, and a fatal course of disease occurred in a patient with sickle cell anemia suggesting additional interference of ZIKV with erythroid and megakaryocytic cells. Therefore, we analyzed whether ZIKV propagates in or compartmentalizes with hematopoietic progenitor, erythroid, and megakaryocytic cells. METHODS: ZIKV RNA replication, protein translation and infectious particle formation in hematopoietic cell lines as well as primary CD34+ HSPCs and ex vivo differentiated erythroid and megakaryocytic cells was monitored using qRT-PCR, FACS, immunofluorescence analysis and infectivity assays. Distribution of ZIKV RNA and infectious particles in spiked red blood cell (RBC) units or platelet concentrates (PCs) was evaluated. RESULTS: While subsets of K562 and KU812Ep6EPO cells supported ZIKV propagation, primary CD34+ HSPCs, MEP cells, RBCs, and platelets were non-permissive for ZIKV infection. In spiking studies, ZIKV RNA was detectable for 7 days in all fractions of RBC units and PCs, however, ZIKV infectious particles were not associated with erythrocytes or platelets. CONCLUSION: Viral particles from plasma or contaminating leukocytes, rather than purified CD34+ HSPCs or the cellular component of RBC units or PCs, present the greatest risk for transfusion-transmitted ZIKV infections.


Asunto(s)
Antígenos CD34/metabolismo , Plaquetas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Progenitoras de Megacariocitos y Eritrocitos/metabolismo , Infección por el Virus Zika/metabolismo , Virus Zika/patogenicidad , Diferenciación Celular/fisiología , Línea Celular , Eritrocitos/citología , Humanos , ARN Viral/genética
3.
Cell Mol Gastroenterol Hepatol ; 15(1): 237-259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36184032

RESUMEN

BACKGROUND & AIMS: Hepatitis B virus (HBV) was identified as an enveloped DNA virus with a diameter of 42 nm. Multivesicular bodies play a central role in HBV egress and exosome biogenesis. In light of this, it was studied whether intact virions wrapped in exosomes are released by HBV-producing cells. METHODS: Robust methods for efficient separation of exosomes from virions were established. Exosomes were subjected to limited detergent treatment for release of viral particles. Electron microscopy of immunogold labeled ultrathin sections of purified exosomes was performed for characterization of exosomal HBV. Exosome formation/release was affected by inhibitors or Crispr/Cas-mediated gene silencing. Infectivity/uptake of exosomal HBV was investigated in susceptible and non-susceptible cells. RESULTS: Exosomes could be isolated from supernatants of HBV-producing cells, which are characterized by the presence of exosomal and HBV markers. These exosomal fractions could be separated from the fractions containing free virions. Limited detergent treatment of exosomes causes stepwise release of intact HBV virions and naked capsids. Inhibition of exosome morphogenesis impairs the release of exosome-wrapped HBV. Electron microscopy confirmed the presence of intact virions in exosomes. Moreover, the presence of large hepatitis B virus surface antigen on the surface of exosomes derived from HBV expressing cells was observed, which conferred exosome-encapsulated HBV initiating infection in susceptible cells in a , large hepatitis B virus surface antigen/Na+-taurocholate co-transporting polypeptide-dependent manner. The uptake of exosomal HBV with low efficiency was also observed in non-permissive cells. CONCLUSION: These data indicate that a fraction of intact HBV virions can be released as exosomes. This reveals a so far not described release pathway for HBV.


Asunto(s)
Exosomas , Hepatitis B , Humanos , Detergentes/metabolismo , Virión , Hepatitis B/metabolismo , Virus de la Hepatitis B/genética , Antígenos de Superficie/metabolismo
4.
Sci Rep ; 12(1): 13007, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906465

RESUMEN

Viruses of the giant virus family are characterized by a structurally conserved scaffold-capsid protein that shapes the icosahedral virion. The vaccinia virus (VACV) scaffold protein D13, however, transiently shapes the newly assembled viral membrane in to a sphere and is absent from the mature brick-shaped virion. In infected cells D13, a 62 kDa polypeptide, forms trimers that arrange in hexamers and a honey-comb like lattice. Membrane association of the D13-lattice may be mediated by A17, an abundant 21 kDa viral membrane protein. Whether membrane binding mediates the formation of the honey-comb lattice or if other factors are involved, remains elusive. Here we show that H7, a 17 kDa protein conserved among poxviruses, mediates proper formation of D13-hexamers, and hence the honey comb lattice and spherical immature virus. Without H7 synthesis D13 trimers assemble into a large 3D network rather than the typical well organized scaffold layer observed in wild-type infection, composed of short D13 tubes of discrete length that are tightly associated with the endoplasmic reticulum (ER). The data show an unexpected role for H7 in D13 organization and imply that formation of the honey-comb, hexagonal, lattice is essential for VACV membrane assembly and production of infectious progeny. The data are discussed with respect to scaffold proteins of other giant viruses.


Asunto(s)
Virus Vaccinia , Vaccinia , Humanos , Virus Vaccinia/química , Proteínas Virales/metabolismo , Virión/metabolismo , Ensamble de Virus
5.
Anat Histol Embryol ; 49(5): 606-619, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31793053

RESUMEN

Every year, influenza viruses spread around the world, infecting the respiratory systems of countless humans and animals, causing illness and even death. Severe influenza infection is associated with pulmonary epithelial damage and endothelial dysfunction leading to acute lung injury (ALI). There is evidence that an aggressive cytokine storm and cell damage in lung capillaries as well as endothelial/platelet interactions contribute to vascular leakage, pro-thrombotic milieu and infiltration of immune effector cells. To date, treatments for ALI caused by influenza are limited to antiviral drugs, active ventilation or further symptomatic treatments. In this review, we summarize the mechanisms of influenza-mediated pathogenesis, permissive animal models and histopathological changes of lung tissue in both mice and men and compare it with histological and electron microscopic data from our own group. We highlight the molecular and cellular interactions between pulmonary endothelium and platelets in homeostasis and influenza-induced pathogenesis. Finally, we discuss novel therapeutic targets on platelets/endothelial interaction to reduce or resolve ALI.


Asunto(s)
Plaquetas/fisiología , Endotelio/fisiología , Gripe Humana/sangre , Infecciones por Orthomyxoviridae/veterinaria , Orthomyxoviridae/genética , Animales , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Humanos , Gripe Humana/patología , Orthomyxoviridae/clasificación , Infecciones por Orthomyxoviridae/sangre , Infecciones por Orthomyxoviridae/patología , Activación Plaquetaria , Alveolos Pulmonares/patología
6.
Micron ; 108: 6-10, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29499397

RESUMEN

skNAC (skeletal and heart muscle-specific variant of nascent polypeptide-associated complex) and Smyd1 (SET and MYND domain-containing 1) form a protein dimer which is specific for striated muscle cells. Its function is largely unknown. On the one hand, skNAC-Smyd1 appears to control transcriptional processes in the nucleus, on the other hand, specifically at later stages of myogenic differentiation, both proteins translocate to the sarcoplasm and at least Smyd1 specifically associates with sarcomeric structures and might control myofibrillogenesis and/or sarcomere architecture. Here, using immunofluorescence and electron microscopy, we analyzed sarcomere formation and myofibril organization after siRNA-mediated knockdown of skNAC or Smyd1 expression in murine C2C12 skeletal muscle cells. We found that inhibition of skNAC or Smyd1 expression indeed prevents myofibrillogenesis and sarcomere formation, leading to a disorganized array of myofilaments predominantly within the region immediately beneath the plasma membrane.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Chaperonas Moleculares/biosíntesis , Desarrollo de Músculos/genética , Proteínas Musculares/biosíntesis , Miofibrillas/metabolismo , Sarcómeros/metabolismo , Factores de Transcripción/biosíntesis , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Técnica del Anticuerpo Fluorescente , Ratones , Microscopía Electrónica , Chaperonas Moleculares/genética , Proteínas Musculares/genética , Músculo Estriado/citología , Miofibrillas/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Sarcómeros/genética , Factores de Transcripción/genética
7.
Sci Rep ; 7(1): 16892, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29203786

RESUMEN

Recombinant vaccine strain-derived measles virus (MV) is clinically tested both as vaccine platform to protect against other pathogens and as oncolytic virus for tumor treatment. To investigate the potential synergism in anti-tumoral efficacy of oncolytic and vaccine properties, we chose Ovalbumin and an ideal tumor antigen, claudin-6, for pre-clinical proof of concept. To enhance immunogenicity, both antigens were presented by retroviral virus-like particle produced in situ during MV-infection. All recombinant MV revealed normal growths, genetic stability, and proper expression and presentation of both antigens. Potent antigen-specific humoral and cellular immunity were found in immunized MV-susceptible IFNAR-/--CD46Ge mice. These immune responses significantly inhibited metastasis formation or increased therapeutic efficacy compared to control MV in respective novel in vivo tumor models using syngeneic B16-hCD46/mCLDN6 murine melanoma cells. These data indicate the potential of MV to trigger selected tumor antigen-specific immune responses on top of direct tumor lysis for enhanced efficacy.


Asunto(s)
Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/inmunología , Virus del Sarampión/genética , Melanoma Experimental/terapia , Vacunas de Partículas Similares a Virus/inmunología , Animales , Presentación de Antígeno , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Autoanticuerpos/sangre , Autoanticuerpos/metabolismo , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Chlorocebus aethiops , Claudinas/genética , Claudinas/inmunología , Claudinas/metabolismo , Inmunidad Celular , Inmunidad Humoral , Interferón gamma/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Melanoma Experimental/inmunología , Ratones , Ratones Transgénicos , Viroterapia Oncolítica , Ovalbúmina/genética , Ovalbúmina/inmunología , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/uso terapéutico , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA