Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360659

RESUMEN

Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.


Asunto(s)
Aterosclerosis/patología , Plaquetas/patología , Inmunidad Innata/inmunología , Neoplasias/patología , Activación Plaquetaria , Receptores Inmunológicos/metabolismo , Receptores Toll-Like/metabolismo , Animales , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Plaquetas/inmunología , Plaquetas/metabolismo , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo
2.
Blood Transfus ; 21(5): 409-421, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36346879

RESUMEN

BACKGROUND: Structural and biochemical changes in stored platelets are influenced by collection and processing methods. Lesions may appear during platelet concentrate storage, some of which may be involved in adverse transfusion reactions. The preparation and storage of platelet concentrates (PC) may modify and even damage the lipid mediator content. The aim of this study was to investigate the lipidomic profile identified in the supernatants of PCs according to processing and storage conditions, both after leukocyte filtration and contained in platelet additive solution (PAS), comparing single donor apheresis (SDA) products with pooled buffy coat (BC) products. MATERIALS AND METHODS: We investigated the accumulation of various lipid mediators including lysophospholipids (LP) and eicosanoids in SDA and BC products stored for 0-5 days. All products were processed following French Blood Establishment (EFS) procedures in accordance with EDQM/GTS European Standards. Both SDA and BC were leukocyte reduced and conserved in 35% autologous donor plasma and 65% platelet additive solution. Lipidomic analysis was performed on PC supernatants using LS/MS spectrometry. RESULTS: Our data demonstrate that lysophosphatidylcholine (LPC) levels were higher in BCs compared to SDAs, with no difference in lysophosphatidic acid (LPA) expression between the two preparation methods. Results for other eicosanoids showed greater similarity; indeed, no clear pattern emerged from analysis of eicosanoids in terms of storage time and process. In general, we observed longitudinal lipid mediator modulation for both SDAs and BCs, particularly at later time points. DISCUSSION: The expression of LPC and some eicosanoids in BCs could be used as novel biomarkers of PC quality. Future studies are needed to explore their impact on adverse transfusion reactions.


Asunto(s)
Eliminación de Componentes Sanguíneos , Lipidómica , Humanos , Plaquetas/metabolismo , Transfusión de Plaquetas , Conservación de la Sangre/métodos , Lípidos
3.
Front Immunol ; 14: 1031968, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37138863

RESUMEN

Platelet concentrate (PC) transfusion seeks to provide haemostasis in patients presenting severe central thrombocytopenia or severe bleeding. PCs may induce adverse reactions (AR) that can occasionally be severe (SAR). PCs contain active biomolecules such as cytokines and lipid mediators. The processing and storage of PCs creates so-called structural and biochemical storage lesions that accumulate when blood products reach their shelf life. We sought to investigate lipid mediators as bioactive molecules of interest during storage and review associations with adverse reactions post-transfusion. To facilitate understanding, we focused on single donor apheresis (SDA) PCs with approximately 31.8% of PCs being delivered in our setting. Indeed, pooled PCs are the most widely transfused products, but the study of a single donor lipid mediator is easier to interpret. We are investigating key lipid mediators involved in AR. Adverse reactions were closely monitored in accordance with current national and regional haemovigilance protocols. Residual PCs were analysed post-transfusion in a series of observations, both with and without severe reactions in recipients. A decrease in the lysophosphatidylcholine species to produce the lysophosphatidic acid species has been observed during storage and in the case of AR. Lysophosphatidic acid increased with primarily platelet-inhibitor lipids. Anti-inflammatory platelet-induced inhibition lipids were weakly expressed in cases of severe adverse reactions. We therefore propose that a decrease in lysophosphatidylcholine and an increase in lysophosphatidic acid can prospectively predict serious adverse transfusion reactions.


Asunto(s)
Eliminación de Componentes Sanguíneos , Lisofosfatidilcolinas , Humanos , Transfusión de Plaquetas/efectos adversos , Plaquetas , Eliminación de Componentes Sanguíneos/efectos adversos , Biomarcadores
4.
Front Cardiovasc Med ; 10: 1094786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215546

RESUMEN

Coronavirus disease (COVID)-19 is characterised in particular by vascular inflammation with platelet activation and endothelial dysfunction. During the pandemic, therapeutic plasma exchange (TPE) was used to reduce the cytokine storm in the circulation and delay or prevent ICU admissions. This procedure consists in replacing the inflammatory plasma by fresh frozen plasma from healthy donors and is often used to remove pathogenic molecules from plasma (autoantibodies, immune complexes, toxins, etc.). This study uses an in vitro model of platelet-endothelial cell interactions to assess changes in these interactions by plasma from COVID-19 patients and to determine the extent to which TPE reduces such changes. We noted that exposure of an endothelial monolayer to plasmas from COVID-19 patients post-TPE induced less endothelial permeability compared to COVID-19 control plasmas. Yet, when endothelial cells were co-cultured with healthy platelets and exposed to the plasma, the beneficial effect of TPE on endothelial permeability was somewhat reduced. This was linked to platelet and endothelial phenotypical activation but not with inflammatory molecule secretion. Our work shows that, in parallel to the beneficial removal of inflammatory factors from the circulation, TPE triggers cellular activation which may partly explain the reduction in efficacy in terms of endothelial dysfunction. These findings provide new insights for improving the efficacy of TPE using supporting treatments targeting platelet activation, for instance.

5.
EBioMedicine ; 87: 104414, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36535107

RESUMEN

BACKGROUND: COVID-19 convalescent plasma (CCP) contains neutralising anti-SARS-CoV-2 antibodies that may be useful as COVID-19 passive immunotherapy in patients at risk of developing severe disease. Such plasma from convalescent patients may also have additional immune-modulatory properties when transfused to COVID-19 patients. METHODS: CCP (n = 766) was compared to non-convalescent control plasma (n = 166) for soluble inflammatory markers, ex-vivo inflammatory bioactivity on endothelial cells, neutralising auto-Abs to type I IFNs and reported adverse events in the recipients. FINDINGS: CCP exhibited a statistically significant increase in IL-6 and TNF-alpha levels (0.531 ± 0.04 vs 0.271 ± 0.04; (95% confidence interval [CI], 0.07371-0.4446; p = 0.0061) and 0.900 ± 0.07 vs 0.283 ± 0.07 pg/mL; (95% [CI], 0.3097-0.9202; p = 0.0000829) and lower IL-10 (0.731 ± 0.07 vs 1.22 ± 0.19 pg/mL; (95% [CI], -0.8180 to -0.1633; p = 0.0034) levels than control plasma. Neutralising auto-Abs against type I IFNs were detected in 14/766 (1.8%) CCPs and were not associated with reported adverse events when transfused. Inflammatory markers and bioactivity in CCP with or without auto-Abs, or in CCP whether or not linked to adverse events in transfused patients, did not differ to a statistically significant extent. INTERPRETATION: Overall, CCP exhibited moderately increased inflammatory markers compared to the control plasma with no discernible differences in ex-vivo bioactivity. Auto-Abs to type I IFNs detected in a small fraction of CCP were not associated with reported adverse events or differences in inflammatory markers. Additional studies, including careful clinical evaluation of patients treated with CCP, are required in order to further define the clinical relevance of these findings. FUNDING: French National Blood Service-EFS, the Association "Les Amis de Rémi" Savigneux, France, the "Fondation pour la Recherche Médicale (Medical Research Foundation)-REACTing 2020".


Asunto(s)
COVID-19 , Humanos , Estudios de Cohortes , Células Endoteliales , Sueroterapia para COVID-19 , Inmunización Pasiva , Anticuerpos Antivirales
6.
Front Immunol ; 13: 825892, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185916

RESUMEN

Platelets are anucleate cytoplasmic fragments derived from the fragmentation of medullary megakaryocytes. Activated platelets adhere to the damaged endothelium by means of glycoproteins on their surface, forming the platelet plug. Activated platelets can also secrete the contents of their granules, notably the growth factors contained in the α-granules, which are involved in platelet aggregation and maintain endothelial activation, but also contribute to vascular repair and angiogenesis. Platelets also have a major inflammatory and immune function in antibacterial defence, essentially through their Toll-like Receptors (TLRs) and Sialic acid-binding immunoglobulin-type lectin (SIGLEC). Platelet activation also contributes to the extensive release of anti- or pro-inflammatory mediators such as IL-1ß, RANTES (Regulated on Activation, Normal T Expressed and Secreted) or CD154, also known as the CD40-ligand. Platelets are involved in the direct activation of immune cells, polynuclear neutrophils (PNNs) and dendritic cells via the CD40L/CD40 complex. As a general rule, all of the studies presented in this review show that platelets are capable of covering most of the stages of inflammation, primarily through the CD40L/CD40 interaction, thus confirming their own role in this pathophysiological condition.


Asunto(s)
Plaquetas/inmunología , Antígenos CD40/inmunología , Ligando de CD40/metabolismo , Inflamación/inmunología , Animales , Humanos , Mediadores de Inflamación/metabolismo , Activación Plaquetaria , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA