Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Respir Res ; 25(1): 269, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982492

RESUMEN

BACKGROUND: Cystic Fibrosis causing mutations in the gene CFTR, reduce the activity of the CFTR channel protein, and leads to mucus aggregation, airway obstruction and poor lung function. A role for CFTR in the pathogenesis of other muco-obstructive airway diseases such as Chronic Obstructive Pulmonary Disease (COPD) has been well established. The CFTR modulatory compound, Ivacaftor (VX-770), potentiates channel activity of CFTR and certain CF-causing mutations and has been shown to ameliorate mucus obstruction and improve lung function in people harbouring these CF-causing mutations. A pilot trial of Ivacaftor supported its potential efficacy for the treatment of mucus obstruction in COPD. These findings prompted the search for CFTR potentiators that are more effective in ameliorating cigarette-smoke (CS) induced mucostasis. METHODS: Small molecule potentiators, previously identified in CFTR binding studies, were tested for activity in augmenting CFTR channel activity using patch clamp electrophysiology in HEK-293 cells, a fluorescence-based assay of membrane potential in Calu-3 cells and in Ussing chamber studies of primary bronchial epithelial cultures. Addition of cigarette smoke extract (CSE) to the solutions bathing the apical surface of Calu-3 cells and primary bronchial airway cultures was used to model COPD. Confocal studies of the velocity of fluorescent microsphere movement on the apical surface of CSE exposed airway epithelial cultures, were used to assess the effect of potentiators on CFTR-mediated mucociliary movement. RESULTS: We showed that SK-POT1, like VX-770, was effective in augmenting the cyclic AMP-dependent channel activity of CFTR. SK-POT-1 enhanced CFTR channel activity in airway epithelial cells previously exposed to CSE and ameliorated mucostasis on the surface of primary airway cultures. CONCLUSION: Together, this evidence supports the further development of SK-POT1 as an intervention in the treatment of COPD.


Asunto(s)
Aminofenoles , Bronquios , Regulador de Conductancia de Transmembrana de Fibrosis Quística , Células Epiteliales , Quinolonas , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Quinolonas/farmacología , Aminofenoles/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Humo/efectos adversos , Células Cultivadas , Células HEK293 , Agonistas de los Canales de Cloruro/farmacología , Agonistas de los Canales de Cloruro/uso terapéutico , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo
2.
Eur Respir J ; 57(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33303536

RESUMEN

Positive results in pre-clinical studies of the triple combination of elexacaftor, tezacaftor and ivacaftor, performed in airway epithelial cell cultures obtained from patients harbouring the class II cystic fibrosis transmembrane conductance regulator (CFTR) mutation F508del-CFTR, translated to impressive clinical outcomes for subjects carrying this mutation in clinical trials and approval of Trikafta.Encouraged by this correlation, we were prompted to evaluate the effect of the elexacaftor, tezacaftor and ivacaftor triple combination on primary nasal epithelial cultures obtained from individuals with rare class II CF-causing mutations (G85E, M1101K and N1303K) for which Trikafta is not approved.Cultures from individuals homozygous for M1101K responded better than cultures harbouring G85E and N1303K after treatment with the triple combination with respect to improvement in regulated channel function and protein processing. A similar genotype-specific effect of the triple combination was observed when the different mutations were expressed in HEK293 cells, supporting the hypothesis that these modulators may act directly on the mutant proteins. Detailed studies in nasal cultures and HEK293 cells showed that the corrector, elexacaftor, exhibited dual activity as both corrector and potentiator, and suggested that the potentiator activity contributes to its pharmacological activity.These pre-clinical studies using nasal epithelial cultures identified mutation genotypes for which elexacaftor, tezacaftor and ivacaftor may produce clinical responses that are comparable to, or inferior to, those observed for F508del-CFTR.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Aminofenoles , Benzodioxoles , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Combinación de Medicamentos , Células HEK293 , Humanos , Indoles , Mutación , Pirazoles , Piridinas , Pirrolidinas , Quinolinas , Quinolonas
3.
J Biol Chem ; 292(5): 1988-1999, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28003367

RESUMEN

Cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein that functions as a phosphorylation-regulated anion channel. The interface between its two cytosolic nucleotide binding domains and coupling helices conferred by intracellular loops extending from the channel pore domains has been referred to as a transmission interface and is thought to be critical for the regulated channel activity of CFTR. Phosphorylation of the regulatory domain of CFTR by protein kinase A (PKA) is required for its channel activity. However, it was unclear if phosphorylation modifies the transmission interface. Here, we studied purified full-length CFTR protein using spectroscopic techniques to determine the consequences of PKA-mediated phosphorylation. Synchrotron radiation circular dichroism spectroscopy confirmed that purified full-length wild-type CFTR is folded and structurally responsive to phosphorylation. Intrinsic tryptophan fluorescence studies of CFTR showed that phosphorylation reduced iodide-mediated quenching, consistent with an effect of phosphorylation in burying tryptophans at the transmission interface. Importantly, the rate of phosphorylation-dependent channel activation was compromised by the introduction of disease-causing mutations in either of the two coupling helices predicted to interact with nucleotide binding domain 1 at the interface. Together, these results suggest that phosphorylation modifies the interface between the catalytic and pore domains of CFTR and that this modification facilitates CFTR channel activation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células HEK293 , Humanos , Fosforilación/genética , Dominios Proteicos
4.
Proc Natl Acad Sci U S A ; 108(32): 13083-8, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21778407

RESUMEN

Pseudomonas aeruginosa is the predominant pathogen associated with chronic lung infection among cystic fibrosis patients. During colonization of the lung, P. aeruginosa converts to a mucoid phenotype characterized by the overproduction of the exopolysaccharide alginate. Secretion of newly synthesized alginate across the outer membrane is believed to occur through the outer membrane protein AlgE. Here we report the 2.3 Å crystal structure of AlgE, which reveals a monomeric 18-stranded ß-barrel characterized by a highly electropositive pore constriction formed by an arginine-rich conduit that likely acts as a selectivity filter for the negatively charged alginate polymer. Interestingly, the pore constriction is occluded on either side by extracellular loop L2 and an unusually long periplasmic loop, T8. In halide efflux assays, deletion of loop T8 (ΔT8-AlgE) resulted in a threefold increase in anion flux compared to the wild-type or ΔL2-AlgE supporting the idea that AlgE forms a transport pathway through the membrane and suggesting that transport is regulated by T8. This model is further supported by in vivo experiments showing that complementation of an algE deletion mutant with ΔT8-AlgE impairs alginate production. Taken together, these studies support a mechanism for exopolysaccharide export across the outer membrane that is distinct from the Wza-mediated translocation observed in canonical capsular polysaccharide export systems.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/metabolismo , Pseudomonas aeruginosa/metabolismo , Alginatos , Proteínas Bacterianas/metabolismo , Transporte Biológico , Secuencia Conservada , Ácido Glucurónico/metabolismo , Ácidos Hexurónicos , Modelos Moleculares , Periplasma/metabolismo , Docilidad , Polisacáridos/metabolismo , Porinas/metabolismo , Porosidad , Estructura Secundaria de Proteína , Homología Estructural de Proteína , Especificidad por Sustrato
5.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496440

RESUMEN

Background: Cystic Fibrosis causing mutations in the gene CFTR , reduce the activity of the CFTR channel protein, and leads to mucus aggregation, airway obstruction and poor lung function. A role for CFTR in the pathogenesis of other muco-obstructive airway diseases such as Chronic Obstructive Pulmonary Disease (COPD) has been well established. The CFTR modulatory compound, Ivacaftor (VX-770), potentiates channel activity of CFTR and certain CF-causing mutations and has been shown to ameliorate mucus obstruction and improve lung function in people harbouring these CF-causing mutations. A pilot trial of Ivacaftor supported its potential efficacy for the treatment of mucus obstruction in COPD. These findings prompted the search for CFTR potentiators that are more effective in ameliorating cigarette-smoke (CS) induced mucostasis. Methods: A novel small molecule potentiator (SK-POT1), previously identified in CFTR binding studies, was tested for its activity in augmenting CFTR channel activity using patch clamp electrophysiology in HEK-293 cells, a fluorescence-based assay of membrane potential in Calu-3 cells and in Ussing chamber studies of primary bronchial epithelial cultures. Addition of cigarette smoke extract (CSE) to the solutions bathing the apical surface of Calu-3 cells and primary bronchial airway cultures was used to model COPD. Confocal studies of the velocity of fluorescent microsphere movement on the apical surface of CSE exposed airway epithelial cultures, were used to assess the effect of potentiators on CFTR-mediated mucociliary movement. Results: We showed that SK-POT1, like VX-770, was effective in augmenting the cyclic AMP-dependent channel activity of CFTR. SK-POT-1 enhanced CFTR channel activity in airway epithelial cells previously exposed to CSE and ameliorated mucostasis on the surface of primary airway cultures. Conclusion: Together, this evidence supports the further development of SK-POT1 as an intervention in the treatment of COPD.

6.
J Biol Chem ; 287(44): 36639-49, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-22942289

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe.


Asunto(s)
Adenosina Trifosfato/química , Aminofenoles/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Activación del Canal Iónico/efectos de los fármacos , Proteínas Mutantes/química , Quinolonas/química , Animales , Caprilatos/química , Línea Celular , Cromatografía de Afinidad , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/aislamiento & purificación , Detergentes/química , Fluorocarburos/química , Humanos , Liposomas , Mutación Missense , Fosforilación , Unión Proteica , Conformación Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional , Eliminación de Secuencia , Transducción de Señal/efectos de los fármacos , Spodoptera
7.
Cells ; 12(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37190083

RESUMEN

It has been suggested that in vitro studies of the rescue effect of CFTR modulator drugs in nasal epithelial cultures derived from people with cystic fibrosis have the potential to predict clinical responses to the same drugs. Hence, there is an interest in evaluating different methods for measuring in vitro modulator responses in patient-derived nasal cultures. Commonly, the functional response to CFTR modulator combinations in these cultures is assessed by bioelectric measurements, using the Ussing chamber. While this method is highly informative, it is time-consuming. A fluorescence-based, multi-transwell method for assaying regulated apical chloride conductance (Fl-ACC) promises to provide a complementary approach to theratyping in patient-derived nasal cultures. In the present work, we compared Ussing chamber measurements and fluorescence-based measurements of CFTR-mediated apical conductance in matching, fully differentiated nasal cultures derived from CF patients, homozygous for F508del (n = 31) or W1282X (n = 3), or heterozygous for Class III mutations G551D or G178R (n = 5). These cultures were obtained through a bioresource called the Cystic Fibrosis Canada-Sick Kids Program in Individual CF Therapy (CFIT). We found that the Fl-ACC method was effective in detecting positive responses to interventions for all genotypes. There was a correlation between patient-specific drug responses measured in cultures harbouring F508del, as measured using the Ussing chamber technique and the fluorescence-based assay (Fl-ACC). Finally, the fluorescence-based assay has the potential for greater sensitivity for detecting responses to pharmacological rescue strategies targeting W1282X.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fluorescencia , Mutación , Genotipo
8.
J Cyst Fibros ; 22(5): 933-940, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37100704

RESUMEN

BACKGROUND: Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulator therapies show variable efficacy for patients with CF. Patient-derived predictive tools may identify individuals likely to respond to CFTRs, but are not in routine use. We aimed to determine the cost-utility of predictive tool-guided treatment with CFTRs as add-on to standard of care (SoC) for individuals with CF. METHODS: This economic evaluation compared two strategies using an individual level simulation: (i) Treat All, where all patients received CFTRs plus SoC and (ii) Test→Treat, where patients who tested positive on predictive tools received CFTRs plus SoC and those who tested negative received SoC only. We simulated 50,000 individuals over their lifetime, and estimated costs (2020 CAD) per quality-adjusted life year (QALY) from the healthcare payer's perspective, discounted at 1.5% annually. The model was populated using Canadian CF registry data and published literature. Probabilistic and deterministic sensitivity were conducted. RESULTS: The Treat All and Test→Treat and strategies yielded 22.41 and 21.36 QALYs, and cost $4.21 M and $3.15 M respectively. Results of probabilistic sensitivity analysis showed that Test→Treat was highly cost-effective compared to Treat All in 100% of simulations at cost-effectiveness thresholds as high as $500,000 per QALY. Test→Treat may save between $931 K to $1.1 M per QALY lost, depending on sensitivity and specificity of predictive tools. CONCLUSION: The use of predictive tools could optimize the health benefits of CFTR modulators while reducing costs. Our findings support the use of pre-treatment predictive testing and may help inform coverage and reimbursement policies for individuals with CF.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Fibrosis Quística/terapia , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Análisis de Costo-Efectividad , Canadá , Análisis Costo-Beneficio
9.
J Cyst Fibros ; 22(6): 1062-1069, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37331863

RESUMEN

BACKGROUND: Elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA) significantly improves health outcomes in people with cystic fibrosis (pwCF) carrying one or two F508del mutations. According to in vitro assays performed in FRT cells, 178 additional mutations respond to ELX/TEZ/IVA. The N1303K mutation is not included in this list of mutations. Recent in vitro data suggested that ELX/TEZ/IVA increases N1303K-CFTR activity. Based on the in vitro response, eight patients commenced treatment with ELX/TEZ/IVA. METHODS: Two homozygotes; and six compound heterozygotes N1303K/nonsense or frameshift mutation pwCF were treated off label with ELX/TEZ/IVA. Clinical data before and 8 weeks after starting treatment were prospectively collected. The response to ELX/TEZ/IVA was assessed in intestinal organoids derived from 5 study patients and an additional patient carrying N1303K that is not receiving treatment. RESULTS: Compared to the values before commencing treatment, mean forced expiratory volume in 1 second increased by 18.4 percentage points and 26.5% relative to baseline, mean BMI increased by 0.79 Kg/m2, and mean lung clearance index decreased by 3.6 points and 22.2%. There was no significant change in sweat chloride. Nasal potential difference normalized in four patients and remained abnormal in three. Results in 3D intestinal organoids and 2D nasal epithelial cultures showed a response in CFTR channel activity. CONCLUSIONS: This report supports the previously reported in vitro data, performed in human nasal and bronchial epithelial cells and intestinal organoids, that pwCF who carry the N1303K mutation have a significant clinical benefit by ELX/TEZ/IVA treatment.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación , Benzodioxoles/uso terapéutico , Aminofenoles/uso terapéutico , Agonistas de los Canales de Cloruro/uso terapéutico
10.
Biochem J ; 435(2): e1-4, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21726198

RESUMEN

In this issue of the Biochemical Journal, Zhang et al. reveal a new strategy for modifying the regulated function of CFTR (cystic fibrosis transmembrane conductance regulator) on the apical surface of epithelial cells. Simply stated, these authors tested the idea that the cAMP-dependent channel activity of CFTR could be effectively enhanced by disruption of a protein-protein interaction which is normally inhibitory for the production of cAMP. This particular protein-protein interaction [between the PDZ motif of LPA2 (type 2 lysophosphatidic acid receptor) and the scaffold protein Nherf2 (Na+/H+ exchanger regulatory factor 2)] is localized in the CFTR interactome on the apical membrane of epithelial cells. Hence disruption of the LPA2-Nherf2 interaction should lead to a localized elevation in cAMP and, consequently, increased cAMP-dependent CFTR activity on the surface of epithelial cells. Zhang et al. confirmed these expectations for a small-molecule compound targeting the LPA2-Nherf2 interaction using relevant cultures and tissues thought to model the human respiratory epithelium. The success of this strategy depended on previous knowledge regarding the role for multiple PDZ-motif-mediated interactions in signalling (directly or indirectly) to CFTR. Given the number and diversity of such PDZ-mediated interactions, future structural and computational studies will be essential for guiding the design of specific pharmacological interventions.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos/métodos , Membrana Celular/metabolismo , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Humanos , Terapia Molecular Dirigida , Unión Proteica/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología
11.
Biochem J ; 429(1): 195-203, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20412049

RESUMEN

The MsbA protein is an essential ABC (ATP-binding-cassette) superfamily member in Gram-negative bacteria. This 65 kDa membrane protein is thought to function as a homodimeric ATP-dependent lipid translocase or flippase that transports lipid A from the inner to the outer leaflet of the cytoplasmic membrane. We have previously shown that purified MsbA from Escherichia coli displays high ATPase activity, and binds to lipids and lipid-like molecules, including lipid A, with affinity in the low micromolar range. Bacterial membrane vesicles isolated from E. coli overexpressing His6-tagged MsbA displayed ATP-dependent translocation of several fluorescently NBD (7-nitrobenz-2-oxa-1,3-diazole)-labelled phospholipid species. Purified MsbA was reconstituted into proteoliposomes of E. coli lipid and its ability to translocate NBD-labelled lipid derivatives was characterized. In this system, the protein displayed maximal lipid flippase activity of 7.7 nmol of lipid translocated per mg of protein over a 20 min period for an acyl chain-labelled PE (phosphatidylethanolamine) derivative. The protein showed the highest rates of flippase activity when reconstituted into an E. coli lipid mixture. Substantial flippase activity was also observed for a variety of other NBD-labelled phospholipids and glycolipids, including molecules labelled on either the headgroup or the acyl chain. Lipid flippase activity required ATP hydrolysis, and was dependent on the concentration of ATP and NBD-lipid. Translocation of NBD-PE was inhibited by the presence of the putative physiological substrate lipid A. The present paper represents the first report of a direct measurement of the lipid flippase activity of purified MsbA in a reconstituted system.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/fisiología , Activación Enzimática/fisiología
12.
Stem Cell Reports ; 16(11): 2825-2837, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34678210

RESUMEN

For those people with cystic fibrosis carrying rare CFTR mutations not responding to currently available therapies, there is an unmet need for relevant tissue models for therapy development. Here, we describe a new testing platform that employs patient-specific induced pluripotent stem cells (iPSCs) differentiated to lung progenitor cells that can be studied using a dynamic, high-throughput fluorescence-based assay of CFTR channel activity. Our proof-of-concept studies support the potential use of this platform, together with a Canadian bioresource that contains iPSC lines and matched nasal cultures from people with rare mutations, to advance patient-oriented therapy development. Interventions identified in the high-throughput, stem cell-based model and validated in primary nasal cultures from the same person have the potential to be advanced as therapies.


Asunto(s)
Diferenciación Celular/genética , Fibrosis Quística/genética , Células Madre Pluripotentes Inducidas/metabolismo , Pulmón/metabolismo , Células Madre/metabolismo , Células Cultivadas , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Pulmón/citología , Mutación , RNA-Seq/métodos , Células Madre/citología
13.
J Pers Med ; 10(4)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167369

RESUMEN

The combination therapies ORKAMBITM and TRIKAFTATM are approved for people who have the F508del mutation on at least one allele. In this study we examine the effects of potentiator and corrector combinations on the rare mutation c.3700A>G. This mutation produces a cryptic splice site that deletes six amino acids in NBD2 (I1234-R1239del). Like F508del it causes protein misprocessing and reduced chloride channel function. We show that a novel cystic fibrosis transmembrane conductance regulator CFTR modulator triple combination (AC1, corrector, AC2-2, co-potentiator and AP2, potentiator), rescued I1234-R1239del-CFTR activity to WT-CFTR level in HEK293 cells. Moreover, we show that although the response to ORKAMBI was modest in nasal epithelial cells from two individuals homozygous for I1234-R1239del-CFTR, a substantial functional rescue was achieved with the novel triple combination. Interestingly, while both the novel CFTR triple combination and TRIKAFTATM treatment showed functional rescue in gene-edited I1234-R1239del-CFTR-expressing HBE cells and in nasal cells from two CF patients heterozygous for I1234-R1239del/W1282X, nasal cells homozygous for I1234-R1239del-CFTR showed no significant response to the TRIKAFTATM combination. These data suggest a potential benefit of CFTR modulators on the functional rescue of I1234-R1239del -CFTR, which arises from the rare CF-causing mutation c.3700A>G, and highlight that patient tissues are crucial to our full understanding of functional rescue in rare CFTR mutations.

14.
J Cyst Fibros ; 18(1): 35-43, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29685812

RESUMEN

BACKGROUND: Therapies targeting certain CFTR mutants have been approved, yet variations in clinical response highlight the need for in-vitro and genetic tools that predict patient-specific clinical outcomes. Toward this goal, the CF Canada-Sick Kids Program in Individual CF Therapy (CFIT) is generating a "first of its kind", comprehensive resource containing patient-specific cell cultures and data from 100 CF individuals that will enable modeling of therapeutic responses. METHODS: The CFIT program is generating: 1) nasal cells from drug naïve patients suitable for culture and the study of drug responses in vitro, 2) matched gene expression data obtained by sequencing the RNA from the primary nasal tissue, 3) whole genome sequencing of blood derived DNA from each of the 100 participants, 4) induced pluripotent stem cells (iPSCs) generated from each participant's blood sample, 5) CRISPR-edited isogenic control iPSC lines and 6) prospective clinical data from patients treated with CF modulators. RESULTS: To date, we have recruited 57 of 100 individuals to CFIT, most of whom are homozygous for F508del (to assess in-vitro: in-vivo correlations with respect to ORKAMBI response) or heterozygous for F508del and a minimal function mutation. In addition, several donors are homozygous for rare nonsense and missense mutations. Nasal epithelial cell cultures and matched iPSC lines are available for many of these donors. CONCLUSIONS: This accessible resource will enable development of tools that predict individual outcomes to current and emerging modulators targeting F508del-CFTR and facilitate therapy discovery for rare CF causing mutations.


Asunto(s)
Aminofenoles/uso terapéutico , Aminopiridinas/uso terapéutico , Benzodioxoles/uso terapéutico , Fibrosis Quística/terapia , Terapia Genética/métodos , Medicina de Precisión/métodos , Desarrollo de Programa/métodos , Quinolonas/uso terapéutico , Canadá/epidemiología , Niño , Fibrosis Quística/epidemiología , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Combinación de Medicamentos , Humanos , Incidencia , Mutación Missense , ARN/genética
15.
Biochemistry ; 47(51): 13686-98, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19049391

RESUMEN

Resistance to a broad spectrum of structurally diverse chemotherapeutic drugs (multidrug resistance; MDR) is a major impediment to the treatment of cancer. One cause of MDR is the expression at the tumor cell surface of P-glycoprotein (Pgp), which functions as an ATP-powered multidrug efflux pump. Since Pgp interacts with its substrates after they partition into the lipid bilayer, changes in membrane physicochemical properties may have substantial effects on its functional activity. Various interactions between cholesterol and Pgp have been suggested, including a role for the protein in transbilayer movement of cholesterol. We have characterized several aspects of Pgp-cholesterol interactions, and found that some of the previously reported effects of cholesterol result from inhibition of Pgp ATPase activity by the cholesterol-extracting reagent, methyl-beta-cyclodextrin. The presence of cholesterol in the bilayer modulated the basal and drug-stimulated ATPase activity of reconstituted Pgp in a modest fashion. Both the ability of drugs to bind to the protein and the drug transport and phospholipid flippase functions of Pgp were also affected by cholesterol. The effects of cholesterol on drug binding affinity were unrelated to the size of the compound. Increasing cholesterol content greatly altered the partitioning of hydrophobic drug substrates into the membrane, which may account for some of the observed effects of cholesterol on Pgp-mediated drug transport. Pgp does not appear to mediate the flip-flop of a fluorescent cholesterol analogue across the bilayer. Cholesterol likely modulates Pgp function via effects on drug-membrane partitioning and changes in the local lipid environment of the protein.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Adenosina Trifosfatasas/química , Colesterol/química , Animales , Transporte Biológico , Cricetinae , Resistencia a Múltiples Medicamentos/fisiología , Membrana Dobles de Lípidos/química , Lípidos/química , Fluidez de la Membrana/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Agua/química
17.
Biochem J ; 389(Pt 2): 517-26, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15799713

RESUMEN

The Pgp (P-glycoprotein) multidrug transporter, which is linked to multidrug resistance in human cancers, functions as an efflux pump for non-polar drugs, powered by the hydrolysis of ATP at its nucleotide binding domains. The drug binding sites of Pgp appear to be located within the cytoplasmic leaflet of the membrane bilayer, suggesting that Pgp may function as a 'flippase' for hydrophobic compounds. Pgp has been shown to translocate fluorescent phospholipids, and it has been suggested that it may also interact with GlcCer (glucosylceramide). Here we use a dithionite fluorescence quenching technique to show that reconstituted Pgp can flip several NBD (nitrobenzo-2-oxa-1,3-diazole)-labelled simple glycosphingolipids, including NBD-GlcCer, from one leaflet of the bilayer to the other in an ATP-dependent, vanadate-sensitive fashion. The rate of NBD-GlcCer flipping was similar to that observed for NBD-labelled PC (phosphatidylcholine). NBD-GlcCer flipping was inhibited in a concentration-dependent, saturable fashion by various Pgp substrates and modulators, and inhibition correlated well with the Kd for binding to the protein. The addition of a second sugar to the headgroup of the glycolipid to form NBD-lactosylceramide drastically reduced the rate of flipping compared with NBD-PC, probably because of the increased size and polarity contributed by the additional sugar residue. We conclude that Pgp functions as a broad-specificity outwardly-directed flippase for simple glycosphingolipids and membrane phospholipids.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Glucosilceramidas/metabolismo , Glicoesfingolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Células CHO , Cricetinae , Ciclosporina/farmacología , Glucosilceramidas/química , Glicoesfingolípidos/química , Estructura Molecular , Fosfatidilcolinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/antagonistas & inhibidores , Unión Proteica , Proteolípidos/química , Proteolípidos/metabolismo
18.
J Vis Exp ; (97)2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25867140

RESUMEN

The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Animales , Transporte Biológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/aislamiento & purificación , Humanos , Proteolípidos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Células Sf9
19.
Chem Biol ; 21(5): 666-78, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-24726831

RESUMEN

The most common mutation causing cystic fibrosis (CF), F508del, impairs conformational maturation of CF transmembrane conductance regulator (CFTR), thereby reducing its functional expression on the surface of epithelia. Corrector compounds including C18 (VRT-534) and VX-809 have been shown to partially rescue misfolding of F508del-CFTR and to enhance its maturation and forward trafficking to the cell surface. Now, we show that there is an additional action conferred by these compounds beyond their role in improving the biosynthetic assembly. In vitro studies show that these compounds bind directly to the metastable, full-length F508del-CFTR channel. Cell culture and patient tissue-based assays confirm that in addition to their cotranslational effect on folding, certain corrector compounds bind to the full-length F508del-CFTR after its partial rescue to the cell surface to enhance its function. These findings may inform the development of alternative compounds with improved therapeutic efficacy.


Asunto(s)
Aminopiridinas/farmacología , Benzodioxoles/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/tratamiento farmacológico , Animales , Células Cultivadas , Cricetinae , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Estabilidad Proteica/efectos de los fármacos , Relación Estructura-Actividad , Propiedades de Superficie
20.
mBio ; 4(5): e00678-13, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24023388

RESUMEN

Wzx flippases are crucial for bacterial cell surface polysaccharide assembly as they transport undecaprenyl pyrophosphate-linked sugar repeat units from the cytoplasmic to the periplasmic leaflets of the inner membrane (IM) for final assembly. Our recently reported three-dimensional (3D) model structure of Wzx from Pseudomonas aeruginosa PAO1 (WzxPa) displayed a cationic internal vestibule and functionally essential acidic amino acids within transmembrane segment bundles. Herein, we examined the intrinsic transport function of WzxPa following its purification and reconstitution in phospholipid liposomes. WzxPa was capable of mediating anion flux, consistent with its cationic interior. This flux was electrogenic and modified by extraliposomal pH. Mutation of the above-mentioned acidic residues (E61, D269, and D359) reduced proton (H(+))-modified anion flux, showing the role of these amino acid side chains in H(+)-dependent transport. Wzx also mediated acidification of the proteoliposome interior in the presence of an outward anion gradient. These results indicate H(+)-dependent gating and H(+) uptake by WzxPa and allow for the first H(+)-dependent antiport mechanism to be proposed for lipid-linked oligosaccharide translocation across the bacterial IM. IMPORTANCE Many bacterial cell surface polysaccharides that are important for survival and virulence are synthesized at the periplasmic leaflet of the inner membrane (IM) using precursors produced in the cytoplasm. Wzx flippases are responsible for translocation of lipid-linked sugar repeat units across the IM and had been previously suggested to simply facilitate passive substrate diffusion. Through our characterization of purified Wzx in a reconstitution system described herein, we have observed protein-dependent intrinsic transport producing a change in the electrical potential of the system, with H(+) identified as the coupling ion. These results provide the first evidence for coupled (i.e., secondary active) transport by these proteins and, in conjunction with structural data, allow for an antiport mechanism to be proposed for the directed transport of lipid-linked sugar substrates across the IM. These findings bring our understanding of lipid-linked polysaccharide transporter proteins more in line with the efflux pumps to which they are evolutionarily related.


Asunto(s)
Aniones/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/química , Membrana Celular/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Antígenos O/metabolismo , Protones , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA