Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 286(17): 15352-60, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21388963

RESUMEN

Aristaless related homeodomain protein (Arx) specifies the formation of the pancreatic islet α-cell during development. This cell type produces glucagon, a major counteracting hormone to insulin in regulating glucose homeostasis in adults. However, little is known about the factors that regulate Arx transcription in the pancreas. In this study, we showed that the number of Arx(+) cells was significantly reduced in the pancreata of embryos deficient for the Islet-1 (Isl-1) transcription factor, which was also supported by the reduction in Arx mRNA levels. Chromatin immunoprecipitation analysis localized Isl-1 activator binding sites within two highly conserved noncoding regulatory regions (Re) in the Arx locus, termed Re1 (+5.6 to +6.1 kb) and Re2 (+23.6 to +24 kb). Using cell line-based transfection assays, we demonstrated that a Re1- and Re2-driven reporter was selectively activated in islet α-cells, a process mediated by Isl-1 in overexpression, knockdown, and site-directed mutation experiments. Moreover, Arx mRNA levels were up-regulated in islet α-cells upon Isl-1 overexpression in vivo. Isl-1 represents the first known activator of Arx transcription in α-cells, here established to be acting through the conserved Re1 and Re2 control domains.


Asunto(s)
Regulación de la Expresión Génica , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Islotes Pancreáticos/crecimiento & desarrollo , Factores de Transcripción/genética , Transcripción Genética , Animales , Células Secretoras de Glucagón/fisiología , Islotes Pancreáticos/embriología , Proteínas con Homeodominio LIM , Masculino , Ratones , Secuencias Reguladoras de Ácidos Nucleicos
2.
Mol Metab ; 6(1): 30-37, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28123935

RESUMEN

OBJECTIVE: Histone deacetylases are epigenetic regulators known to control gene transcription in various tissues. A member of this family, histone deacetylase 3 (HDAC3), has been shown to regulate metabolic genes. Cell culture studies with HDAC-specific inhibitors and siRNA suggest that HDAC3 plays a role in pancreatic ß-cell function, but a recent genetic study in mice has been contradictory. Here we address the functional role of HDAC3 in ß-cells of adult mice. METHODS: An HDAC3 ß-cell specific knockout was generated in adult MIP-CreERT transgenic mice using the Cre-loxP system. Induction of HDAC3 deletion was initiated at 8 weeks of age with administration of tamoxifen in corn oil (2 mg/day for 5 days). Mice were assayed for glucose tolerance, glucose-stimulated insulin secretion, and islet function 2 weeks after induction of the knockout. Transcriptional functions of HDAC3 were assessed by ChIP-seq as well as RNA-seq comparing control and ß-cell knockout islets. RESULTS: HDAC3 ß-cell specific knockout (HDAC3ßKO) did not increase total pancreatic insulin content or ß-cell mass. However, HDAC3ßKO mice demonstrated markedly improved glucose tolerance. This improved glucose metabolism coincided with increased basal and glucose-stimulated insulin secretion in vivo as well as in isolated islets. Cistromic and transcriptomic analyses of pancreatic islets revealed that HDAC3 regulates multiple genes that contribute to glucose-stimulated insulin secretion. CONCLUSIONS: HDAC3 plays an important role in regulating insulin secretion in vivo, and therapeutic intervention may improve glucose homeostasis.


Asunto(s)
Histona Desacetilasas/deficiencia , Histona Desacetilasas/metabolismo , Células Secretoras de Insulina/enzimología , Insulina/metabolismo , Animales , Glucosa/metabolismo , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Insulina/sangre , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Páncreas/citología , Páncreas/enzimología , Páncreas/metabolismo , Eliminación de Secuencia
3.
Endocrinology ; 158(5): 1289-1297, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009534

RESUMEN

The broadly expressed transcriptional coregulator LDB1 is essential for ß-cell development and glucose homeostasis. However, it is unclear whether LDB1 has metabolic roles beyond the ß-cell, especially under metabolic stress. Global Ldb1 deletion results in early embryonic lethality; thus, we used global heterozygous Ldb1+/- and inducible ß-cell-specific Ldb1-deficient (Ldb1Δß-cell) mice. We assessed glucose and insulin tolerance, body composition, feeding, and energy expenditure during high-fat diet exposure. Brown adipose tissue (BAT) biology was evaluated by thermogenic gene expression and LDB1 chromatin immunoprecipitation analysis. We found that partial loss of Ldb1 does not impair the maintenance of glucose homeostasis; rather, we observed improved insulin sensitivity in these mice. Partial loss of Ldb1 also uncovered defects in energy expenditure in lean and diet-induced obese (DIO) mice. This decreased energy expenditure during DIO was associated with significantly altered BAT gene expression, specifically Cidea, Elovl3, Cox7a1, and Dio2. Remarkably, the observed changes in energy balance during DIO were absent in Ldb1Δß-cell mice, despite a similar reduction in plasma insulin, suggesting a role for LDB1 in BAT. Indeed, LDB1 is expressed in brown adipocytes and occupies a regulatory domain of Elovl3, a gene crucial to normal BAT function. We conclude that LDB1 regulates energy homeostasis, in part through transcriptional modulation of critical regulators in BAT function.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Metabolismo Energético/genética , Homeostasis/genética , Proteínas con Dominio LIM/fisiología , Obesidad/genética , Tejido Adiposo Pardo/metabolismo , Animales , Proteínas de Unión al ADN/genética , Dieta Alta en Grasa , Regulación de la Expresión Génica , Heterocigoto , Proteínas con Dominio LIM/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Obesidad/etiología , Obesidad/metabolismo , Termogénesis/genética
4.
J Clin Invest ; 127(1): 215-229, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27941246

RESUMEN

The recognition of ß cell dedifferentiation in type 2 diabetes raises the translational relevance of mechanisms that direct and maintain ß cell identity. LIM domain-binding protein 1 (LDB1) nucleates multimeric transcriptional complexes and establishes promoter-enhancer looping, thereby directing fate assignment and maturation of progenitor populations. Many terminally differentiated endocrine cell types, however, remain enriched for LDB1, but its role is unknown. Here, we have demonstrated a requirement for LDB1 in maintaining the terminally differentiated status of pancreatic ß cells. Inducible ablation of LDB1 in mature ß cells impaired insulin secretion and glucose homeostasis. Transcriptomic analysis of LDB1-depleted ß cells revealed the collapse of the terminally differentiated gene program, indicated by a loss of ß cell identity genes and induction of the endocrine progenitor factor neurogenin 3 (NEUROG3). Lineage tracing confirmed that LDB1-depleted, insulin-negative ß cells express NEUROG3 but do not adopt alternate endocrine cell fates. In primary mouse islets, LDB1 and its LIM homeodomain-binding partner islet 1 (ISL1) were coenriched at chromatin sites occupied by pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), forkhead box A2 (FOXA2), and NK2 homeobox 2 (NKX2.2) - factors that co-occupy active enhancers in 3D chromatin domains in human islets. Indeed, LDB1 was enriched at active enhancers in human islets. Thus, LDB1 maintains the terminally differentiated state of ß cells and is a component of active enhancers in both murine and human islets.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas con Dominio LIM/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/patología , Proteínas con Dominio LIM/genética , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra
5.
Diabetes ; 63(12): 4206-17, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25028525

RESUMEN

Islet-1 (Isl-1) is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear. Here we determine whether Isl-1 plays a distinct role in the postnatal ß-cell by performing physiological and morphometric analyses of a tamoxifen-inducible, ß-cell-specific Isl-1 loss-of-function mouse: Isl-1(L/L); Pdx1-CreER(Tm). Ablating Isl-1 in postnatal ß-cells reduced glucose tolerance without significantly reducing ß-cell mass or increasing ß-cell apoptosis. Rather, islets from Isl-1(L/L); Pdx1-CreER(Tm) mice showed impaired insulin secretion. To identify direct targets of Isl-1, we integrated high-throughput gene expression and Isl-1 chromatin occupancy using islets from Isl-1(L/L); Pdx1-CreER(Tm) mice and ßTC3 insulinoma cells, respectively. Ablating Isl-1 significantly affected the ß-cell transcriptome, including known targets Insulin and MafA as well as novel targets Pdx1 and Slc2a2. Using chromatin immunoprecipitation sequencing and luciferase reporter assays, we found that Isl-1 directly occupies functional regulatory elements of Pdx1 and Slc2a2. Thus Isl-1 is essential for postnatal ß-cell function, directly regulates Pdx1 and Slc2a2, and has a mature ß-cell cistrome distinct from that of pancreatic endocrine progenitors.


Asunto(s)
Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Proteínas con Homeodominio LIM/genética , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Insulina/genética , Insulina/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Noqueados , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
6.
Diabetes ; 62(3): 875-86, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23193182

RESUMEN

Ldb1 and Ldb2 are coregulators that mediate Lin11-Isl1-Mec3 (LIM)-homeodomain (HD) and LIM-only transcription factor-driven gene regulation. Although both Ldb1 and Ldb2 mRNA were produced in the developing and adult pancreas, immunohistochemical analysis illustrated a broad Ldb1 protein expression pattern during early pancreatogenesis, which subsequently became enriched in islet and ductal cells perinatally. The islet-enriched pattern of Ldb1 was similar to pan-endocrine cell-expressed Islet-1 (Isl1), which was demonstrated in this study to be the primary LIM-HD transcription factor in developing and adult islet cells. Endocrine cell-specific removal of Ldb1 during mouse development resulted in a severe reduction of hormone⁺ cell numbers (i.e., α, ß, and δ) and overt postnatal hyperglycemia, reminiscent of the phenotype described for the Isl1 conditional mutant. In contrast, neither endocrine cell development nor function was affected in the pancreas of Ldb2(-/-) mice. Gene expression and chromatin immunoprecipitation (ChIP) analyses demonstrated that many important Isl1-activated genes were coregulated by Ldb1, including MafA, Arx, insulin, and Glp1r. However, some genes (i.e., Hb9 and Glut2) only appeared to be impacted by Ldb1 during development. These findings establish Ldb1 as a critical transcriptional coregulator during islet α-, ß-, and δ-cell development through Isl1-dependent and potentially Isl1-independent control.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Organogénesis , Células Secretoras de Somatostatina/metabolismo , Factores de Transcripción/metabolismo , Animales , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Células Secretoras de Glucagón/citología , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Islotes Pancreáticos/embriología , Islotes Pancreáticos/crecimiento & desarrollo , Islotes Pancreáticos/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Homeodominio LIM/genética , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Células Secretoras de Somatostatina/citología , Factores de Transcripción/genética
7.
J Biol Chem ; 284(29): 19522-32, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19473972

RESUMEN

V-ATPases are molecular motors that reversibly disassemble in vivo. Anchored in the membrane is subunit a. Subunit a has a movable N terminus that switches positions during disassembly and reassembly. Deletions were made at residues securing the N terminus of subunit a (yeast isoform Vph1) to its membrane-bound C-terminal domain in order to understand the role of this conserved region for V-ATPase function. Shrinking of the tether made cells pH-sensitive (vma phenotype) because assembly of V(0) subunit d was harmed. Subunit d did not co-immunoprecipitate with subunit a and the c-ring. Cells contained pools of V(1) and V(0)(-d) that failed to form V(1)V(0), and very low levels of V-ATPase subunits were found at the membrane. Although subunit d expression was stable and at wild-type levels, growth defects were rescued by exogenous VMA6 (subunit d). Stable V(1)V(0) assembled after yeast cells were co-transformed with VMA6 and mutant VPH1. Tether-less V(1)V(0) was delivered to the vacuole and active. It retained 63-71% of the wild-type activity and was responsive to glucose. Tether-less V(1)V(0) disassembled and reassembled after brief glucose depletion and readdition. The N terminus retained binding to V(1) subunits and the C terminus to phosphofructokinase. Thus, no major structural change was generated at the N and C termini of subunit a. We concluded that early steps of V(0) assembly and trafficking were likely impaired by shorter tethers and rescued by VMA6.


Asunto(s)
Proteínas Fúngicas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Levaduras/enzimología , Secuencia de Bases , Western Blotting , Proteínas Fúngicas/genética , Prueba de Complementación Genética , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Mutación , Fenotipo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Eliminación de Secuencia , Transformación Genética , ATPasas de Translocación de Protón Vacuolares/genética , Levaduras/genética , Levaduras/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA