RESUMEN
Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.
Asunto(s)
Antozoos/crecimiento & desarrollo , Cambio Climático/estadística & datos numéricos , Arrecifes de Coral , Agua de Mar/análisis , Animales , Antozoos/metabolismo , Océano Atlántico , Carbonatos/metabolismo , Océano Índico , Modelos Teóricos , Océanos y MaresRESUMEN
Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non-framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3 m(-2) yr(-1) . However, non-framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non-framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean-wide dominance of non-framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non-framework building coral species will further reduce carbonate production rates below 'predecline' levels, resulting in shifts towards negative carbonate budget states and reducing reef growth potential.
Asunto(s)
Antozoos/crecimiento & desarrollo , Antozoos/metabolismo , Carbonatos/metabolismo , Arrecifes de Coral , Animales , Biodiversidad , Calcificación Fisiológica , Región del Caribe , Estaciones del AñoRESUMEN
Coral cover has declined rapidly on Caribbean reefs since the early 1980s, reducing carbonate production and reef growth. Using a cross-regional dataset, we show that widespread reductions in bioerosion rates-a key carbonate cycling process-have accompanied carbonate production declines. Bioerosion by parrotfish, urchins, endolithic sponges and microendoliths collectively averages 2 G (where G = kg CaCO3 m(-2) yr(-1)) (range 0.96-3.67 G). This rate is at least 75% lower than that reported from Caribbean reefs prior to their shift towards their present degraded state. Despite chronic overfishing, parrotfish are the dominant bioeroders, but erosion rates are reduced from averages of approximately 4 to 1.6 G. Urchin erosion rates have declined further and are functionally irrelevant to bioerosion on most reefs. These changes demonstrate a fundamental shift in Caribbean reef carbonate budget dynamics. To-date, reduced bioerosion rates have partially offset carbonate production declines, limiting the extent to which more widespread transitions to negative budget states have occurred. However, given the poor prognosis for coral recovery in the Caribbean and reported shifts to coral community states dominated by slower calcifying taxa, a continued transition from production to bioerosion-controlled budget states, which will increasingly threaten reef growth, is predicted.
Asunto(s)
Antozoos/fisiología , Carbonato de Calcio/metabolismo , Arrecifes de Coral , Animales , Antozoos/crecimiento & desarrollo , Antozoos/microbiología , Región del Caribe , Ecosistema , Dinámica Poblacional , Erizos de Mar/fisiologíaRESUMEN
Seabed hydrocarbon seeps present natural laboratories for investigating responses of marine ecosystems to petroleum input. A hydrocarbon seep near Scott Inlet, Baffin Bay, was visited for in situ observations and sampling in the summer of 2018. Video evidence of an active hydrocarbon seep was confirmed by methane and hydrocarbon analysis of the overlying water column, which is 260 m at this site. Elevated methane concentrations in bottom water above and down current from the seep decreased to background seawater levels in the mid-water column >150 m above the seafloor. Seafloor microbial mats morphologically resembling sulfide-oxidizing bacteria surrounded areas of bubble ebullition. Calcareous tube worms, brittle stars, shrimp, sponges, sea stars, sea anemones, sea urchins, small fish and soft corals were observed near the seep, with soft corals showing evidence for hydrocarbon incorporation. Sediment microbial communities included putative methane-oxidizing Methyloprofundus, sulfate-reducing Desulfobulbaceae and sulfide-oxidizing Sulfurovum. A metabolic gene diagnostic for aerobic methanotrophs (pmoA) was detected in the sediment and bottom water above the seep epicentre and up to 5 km away. Both 16S rRNA gene and pmoA amplicon sequencing revealed that pelagic microbial communities oriented along the geologic basement rise associated with methane seepage (running SW to NE) differed from communities in off-axis water up to 5 km away. Relative abundances of aerobic methanotrophs and putative hydrocarbon-degrading bacteria were elevated in the bottom water down current from the seep. Detection of bacterial clades typically associated with hydrocarbon and methane oxidation highlights the importance of Arctic marine microbial communities in mitigating hydrocarbon emissions from natural geologic sources.
Asunto(s)
Bahías , Microbiota , Animales , Sedimentos Geológicos , Hidrocarburos/análisis , Metano/análisis , Filogenia , ARN Ribosómico 16S , Agua de MarRESUMEN
Shallow marine sediments and fringing coral reefs of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of tailings from industrial gold mining and by small-scale gold mining using mercury amalgamation. Between-site variation in heavy metal concentrations in shallow marine sediments was partially reflected by trace element concentrations in reef coral skeletons from adjacent reefs. Corals skeletons recorded silicon, manganese, iron, copper, chromium, cobalt, antimony, thallium, and lead in different concentrations according to proximity to sources, but arsenic concentrations in corals were not significantly different among sites. Temporal analysis found that peak concentrations of arsenic and chromium generally coincided with peak concentrations of silica and/or copper, suggesting that most trace elements in the coral skeleton were incorporated into detrital siliciclastic sediments, rather than impurities within skeletal aragonite.
Asunto(s)
Antozoos/química , Monitoreo del Ambiente/estadística & datos numéricos , Sedimentos Geológicos/análisis , Oro , Metales Pesados/análisis , Minería , Contaminantes Químicos del Agua/análisis , Animales , Indonesia , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Estadísticas no ParamétricasRESUMEN
Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate terrain attributes for ecological studies may be a challenging process that can lead users to select a subjective, potentially sub-optimal combination of attributes for their applications. The objective of this paper is to assess the impacts of subjectively selecting terrain attributes for ecological applications by comparing the performance of different combinations of terrain attributes in the production of habitat maps and species distribution models. Seven different selections of terrain attributes, alone or in combination with other environmental variables, were used to map benthic habitats of German Bank (off Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications of biophysical characteristics of German Bank were produced, and 29 species distribution models of sea scallops were generated using MaxEnt. The performances of the 58 maps were quantified and compared to evaluate the effectiveness of the various combinations of environmental variables. One of the combinations of terrain attributes-recommended in a related study and that includes a measure of relative position, slope, two measures of orientation, topographic mean and a measure of rugosity-yielded better results than the other selections for both methodologies, confirming that they together best describe terrain properties. Important differences in performance (up to 47% in accuracy measurement) and spatial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of carefully selecting variables for ecological applications. This paper demonstrates that making a subjective choice of variables may reduce map accuracy and produce maps that do not adequately represent habitats and species distributions, thus having important implications when these maps are used for decision-making.
Asunto(s)
Modelos Teóricos , Animales , Área Bajo la Curva , Ecosistema , Pectinidae/fisiología , Curva ROCRESUMEN
Global-scale deteriorations in coral reef health have caused major shifts in species composition. One projected consequence is a lowering of reef carbonate production rates, potentially impairing reef growth, compromising ecosystem functionality and ultimately leading to net reef erosion. Here, using measures of gross and net carbonate production and erosion from 19 Caribbean reefs, we show that contemporary carbonate production rates are now substantially below historical (mid- to late-Holocene) values. On average, current production rates are reduced by at least 50%, and 37% of surveyed sites were net erosional. Calculated accretion rates (mm year(-1)) for shallow fore-reef habitats are also close to an order of magnitude lower than Holocene averages. A live coral cover threshold of ~10% appears critical to maintaining positive production states. Below this ecological threshold carbonate budgets typically become net negative and threaten reef accretion. Collectively, these data suggest that recent ecological declines are now suppressing Caribbean reef growth potential.