Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 134(1): 97-111, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614014

RESUMEN

Cholesterol is essential for membrane synthesis; however, the mechanisms that link cellular lipid metabolism to proliferation are incompletely understood. We demonstrate here that cellular cholesterol levels in dividing T cells are maintained in part through reciprocal regulation of the LXR and SREBP transcriptional programs. T cell activation triggers induction of the oxysterol-metabolizing enzyme SULT2B1, consequent suppression of the LXR pathway for cholesterol transport, and promotion of the SREBP pathway for cholesterol synthesis. Ligation of LXR during T cell activation inhibits mitogen-driven expansion, whereas loss of LXRbeta confers a proliferative advantage. Inactivation of the sterol transporter ABCG1 uncouples LXR signaling from proliferation, directly linking sterol homeostasis to the antiproliferative action of LXR. Mice lacking LXRbeta exhibit lymphoid hyperplasia and enhanced responses to antigenic challenge, indicating that proper regulation of LXR-dependent sterol metabolism is important for immune responses. These results implicate LXR signaling in a metabolic checkpoint that modulates cell proliferation and immunity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Esteroles/metabolismo , Linfocitos T/inmunología , Envejecimiento , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Humanos , Receptores X del Hígado , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos , Receptores Citoplasmáticos y Nucleares/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles , Linfocitos T/metabolismo
2.
Circulation ; 143(18): 1809-1823, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626882

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a multifactorial condition with both genetic and exogenous causes. The contribution of tissue-specific functional networks to the development of atherosclerosis remains largely unclear. The aim of this study was to identify and characterize central regulators and networks leading to atherosclerosis. METHODS: Based on several hundred genes known to affect atherosclerosis risk in mouse (as demonstrated in knockout models) and human (as shown by genome-wide association studies), liver gene regulatory networks were modeled. The hierarchical order and regulatory directions of genes within the network were based on Bayesian prediction models, as well as experimental studies including chromatin immunoprecipitation DNA-sequencing, chromatin immunoprecipitation mass spectrometry, overexpression, small interfering RNA knockdown in mouse and human liver cells, and knockout mouse experiments. Bioinformatics and correlation analyses were used to clarify associations between central genes and CAD phenotypes in both human and mouse. RESULTS: The transcription factor MAFF (MAF basic leucine zipper transcription factor F) interacted as a key driver of a liver network with 3 human genes at CAD genome-wide association studies loci and 11 atherosclerotic murine genes. Most importantly, expression levels of the low-density lipoprotein receptor (LDLR) gene correlated with MAFF in 600 CAD patients undergoing bypass surgery (STARNET [Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task]) and a hybrid mouse diversity panel involving 105 different inbred mouse strains. Molecular mechanisms of MAFF were tested in noninflammatory conditions and showed positive correlation between MAFF and LDLR in vitro and in vivo. Interestingly, after lipopolysaccharide stimulation (inflammatory conditions), an inverse correlation between MAFF and LDLR in vitro and in vivo was observed. Chromatin immunoprecipitation mass spectrometry revealed that the human CAD genome-wide association studies candidate BACH1 (BTB domain and CNC homolog 1) assists MAFF in the presence of lipopolysaccharide stimulation with respective heterodimers binding at the MAF recognition element of the LDLR promoter to transcriptionally downregulate LDLR expression. CONCLUSIONS: The transcription factor MAFF was identified as a novel central regulator of an atherosclerosis/CAD-relevant liver network. MAFF triggered context-specific expression of LDLR and other genes known to affect CAD risk. Our results suggest that MAFF is a missing link between inflammation, lipid and lipoprotein metabolism, and a possible treatment target.


Asunto(s)
Aterosclerosis/metabolismo , Colesterol/metabolismo , Proteínas de Unión al ADN/metabolismo , Inflamación/metabolismo , Factor de Transcripción MafF/metabolismo , Proteínas Nucleares/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Noqueados
3.
Arterioscler Thromb Vasc Biol ; 36(7): 1323-7, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27230131

RESUMEN

OBJECTIVE: In a recent article in Arteriosclerosis, Thrombosis, and Vascular Biology, it was reported that ATP-binding cassette transporter G1 (ABCG1) containing leucine at position 550 (ABCG1-L550) was localized to the plasma membrane, whereas ABCG1-P550 (proline at position 550) was intracellular. Because the published data on the subcellular localization of ABCG1 are controversial, we performed additional experiments to determine the importance of leucine or proline at amino acid 550. APPROACH AND RESULTS: We transfected multiple cell lines (CHO-K1, Cos-7, and HEK293 [human embryonic kidney]) with untagged or FLAG-tagged ABCG1 containing either leucine or proline at position 550. Immunofluorescence studies demonstrated that in all cases, ABCG1 localized to intracellular endosomal vesicles. We also show that both ABCG1-L550 and ABCG1-P550 are equally active in both promoting the efflux of cellular cholesterol to exogenous high-density lipoprotein and in inducing the activity of sterol regulatory element-binding protein-2, presumably as a result of redistributing intracellular sterols away from the endoplasmic reticulum. Importantly, we treated nontransfected primary peritoneal macrophages with a liver X receptor agonist and demonstrate, using immunofluorescence, that although endogenous ABCG1 localizes to intracellular endosomes, none was detectable at the cell surface/plasma membrane. CONCLUSIONS: ABCG1, irrespective of either a leucine or proline at position 550, is an intracellular protein that localizes to vesicles of the endosomal pathway where it functions to mobilize sterols away from the endoplasmic reticulum and out of the cell.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Colesterol/metabolismo , Endosomas/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/deficiencia , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Secuencia de Aminoácidos , Animales , Transporte Biológico , Células CHO , Células COS , Chlorocebus aethiops , HDL-Colesterol/metabolismo , Cricetulus , Genotipo , Células HEK293 , Humanos , Leucina , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Cultivo Primario de Células , Prolina , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Transfección
4.
Biochim Biophys Acta ; 1841(4): 569-73, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24369118

RESUMEN

Nitrogen-containing bisphosphonates (N-BPs) such as zoledronic acid (ZOL) are the gold standard treatment for diseases of excessive bone resorption. N-BPs inactivate osteoclasts via inhibition of farnesyl diphosphate synthase (FPPS), thereby preventing the prenylation of essential small GTPases. Not all patients respond to N-BP therapy to the same extent, and some patients, for example with tumour-associated bone disease or Paget's disease, appear to develop resistance to N-BPs. The extent to which upregulation of FPPS might contribute to these phenomena is not clear. Using quantitative PCR and western blot analysis we show that levels of FPPS mRNA and protein can be upregulated in HeLa cells by culturing in lipoprotein deficient serum (LDS) or by over-expression of SREBP-1a. Upregulated, endogenous FPPS was predominantly localised to the cytosol and did not co-localise with peroxisomal or mitochondrial markers. Upregulation of endogenous FPPS conferred resistance to the inhibitory effect of low concentrations of ZOL on the prenylation of the small GTPase Rap1a. These observations suggest that an increase in the expression of endogenous FPPS could confer at least partial resistance to the pharmacological effect of N-BP drugs such as ZOL in vivo.


Asunto(s)
Resorción Ósea/genética , Difosfonatos/farmacología , Geraniltranstransferasa/genética , Prenilación de Proteína/efectos de los fármacos , Resorción Ósea/patología , Regulación de la Expresión Génica/efectos de los fármacos , Geraniltranstransferasa/antagonistas & inhibidores , Geraniltranstransferasa/biosíntesis , Células HeLa , Humanos , Imidazoles/farmacología , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Ácido Zoledrónico
5.
Circ Res ; 112(12): 1602-12, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23519696

RESUMEN

RATIONALE: The bile acid receptor farnesoid X receptor (FXR) regulates many aspects of lipid metabolism by variouscomplex and incompletely understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. OBJECTIVE: To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. METHODS AND RESULTS: ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma high-density lipoprotein (HDL)-cholesterol levels. Here, we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lowers hepatic ABCA1 and plasma HDL levels. We identified 2 complementary sequences to miR-144 in the 3' untranslated region of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I protein, whereas overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL-cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL-cholesterol. In addition, we used tissue-specific FXR-deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal, FXR. Finally, we identified functional FXR response elements upstream of the miR-144 locus, consistent with direct FXR regulation. CONCLUSIONS: We have identified a novel pathway involving FXR, miR-144, and ABCA1 that together regulate plasma HDL-cholesterol.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , HDL-Colesterol/sangre , Hepatocitos/efectos de los fármacos , Isoxazoles/farmacología , MicroARNs/metabolismo , Quinolinas/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Regiones no Traducidas 3' , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Animales , Apolipoproteína A-I/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica , Células HEK293 , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Interferencia de ARN , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Elementos de Respuesta , Factores de Tiempo , Transfección
6.
Proc Natl Acad Sci U S A ; 108(49): 19719-24, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22095132

RESUMEN

Four members of the mammalian ATP binding cassette (ABC) transporter G subfamily are thought to be involved in transmembrane (TM) transport of sterols. The residues responsible for this transport are unknown. The mechanism of action of ABCG1 is controversial and it has been proposed to act at the plasma membrane to facilitate the efflux of cellular sterols to exogenous high-density lipoprotein (HDL). Here we show that ABCG1 function is dependent on localization to intracellular endosomes. Importantly, localization to the endosome pathway distinguishes ABCG1 and/or ABCG4 from all other mammalian members of this superfamily, including other sterol transporters. We have identified critical residues within the TM domains of ABCG1 that are both essential for sterol transport and conserved in some other members of the ABCG subfamily and/or the insulin-induced gene 2 (INSIG-2). Our conclusions are based on studies in which (i) biotinylation of peritoneal macrophages showed that endogenous ABCG1 is intracellular and undetectable at the cell surface, (ii) a chimeric protein containing the TM of ABCG1 and the cytoplasmic domains of the nonsterol transporter ABCG2 is both targeted to endosomes and functional, and (iii) ABCG1 colocalizes with multiple proteins that mark late endosomes and recycling endosomes. Mutagenesis studies identify critical residues in the TM domains that are important for ABCG1 to alter sterol efflux, induce sterol regulatory element binding protein-2 (SREBP-2) processing, and selectively attenuate the oxysterol-mediated repression of SREBP-2 processing. Our data demonstrate that ABCG1 is an intracellular sterol transporter that localizes to endocytic vesicles to facilitate the redistribution of specific intracellular sterols away from the endoplasmic reticulum (ER).


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Espacio Intracelular/metabolismo , Lipoproteínas/metabolismo , Esteroles/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Animales , Benzoatos/farmacología , Bencilaminas/farmacología , Transporte Biológico , Western Blotting , Células CHO , Células COS , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Cricetulus , Endosomas/metabolismo , Células HEK293 , Humanos , Lipoproteínas/genética , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Transfección
7.
Biochim Biophys Acta ; 1821(3): 386-95, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21824529

RESUMEN

ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Colesterol/metabolismo , Receptores de Superficie Celular/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Regulación de la Expresión Génica , Homeostasis , Humanos , MicroARNs/genética , MicroARNs/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 31(2): 328-36, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21071704

RESUMEN

OBJECTIVE: Loss-of-function mutations in human hepatocyte nuclear factor 4α (HNF4α) are associated with maturity-onset diabetes of the young and lipid disorders. However, the mechanisms underlying the lipid disorders are poorly understood. In this study, we determined the effect of acute loss or augmentation of hepatic HNF4α function on lipid homeostasis. METHODS AND RESULTS: We generated an adenovirus expressing LacZ (Ad-shLacZ) or short hairpin RNA of Hnf4α (Ad-shHnf4α). Tail vain injection of C57BL/6J mice with Ad-shHnf4α reduced hepatic Hnf4α expression and resulted in striking phenotypes, including the development of fatty liver and a >80% decrease in plasma levels of triglycerides, total cholesterol, and high-density lipoprotein cholesterol. These latter changes were associated with reduced hepatic lipogenesis and impaired very-low-density lipoprotein secretion. Deficiency in hepatic Hnf4α did not affect intestinal cholesterol absorption despite decreased expression of genes involved in bile acid synthesis. Consistent with the loss-of-function data, overexpression of Hnf4α induced numerous genes involved in lipid metabolism in isolated primary hepatocytes. Interestingly, many of these HNF4α-regulated genes were not induced in wild-type mice that overexpressed hepatic Hnf4α. Because of selective gene regulation, mice overexpressing hepatic Hnf4α had unchanged plasma triglyceride levels and decreased plasma cholesterol levels. CONCLUSIONS: Loss of hepatic HNF4α results in severe lipid disorder as a result of dysregulation of multiple genes involved in lipid metabolism. In contrast, augmentation of hepatic HNF4α activity lowers plasma cholesterol levels but has no effect on plasma triglyceride levels because of selective gene regulation. Our data indicate that hepatic HNF4α is essential for controlling the basal expression of numerous genes involved in lipid metabolism and is indispensable for maintaining normal lipid homeostasis.


Asunto(s)
Colesterol/metabolismo , Factor Nuclear 4 del Hepatocito/fisiología , Hepatocitos/metabolismo , Homeostasis/fisiología , Triglicéridos/metabolismo , Adenoviridae/genética , Animales , Células Cultivadas , HDL-Colesterol/metabolismo , VLDL-Colesterol/metabolismo , Hígado Graso/metabolismo , Hígado Graso/fisiopatología , Factor Nuclear 4 del Hepatocito/efectos de los fármacos , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/citología , Homeostasis/genética , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología
9.
Nucleic Acids Res ; 38(18): 6007-17, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20483916

RESUMEN

We used mouse hepatic chromatin enriched with an FXR antibody and chromatin immunoprecipitation-sequencing (ChIP-seq) to evaluate FXR binding on a genome-wide scale. This identified 1656 FXR-binding sites and 10% were located within 2 kb of a transcription start site which is much higher than predicted by random occurrence. A motif search uncovered a canonical nuclear receptor IR-1 site, consistent with in vitro DNA-binding studies reported previously. A separate nuclear receptor half-site for monomeric receptors such as LRH-1 was co-enriched and FXR activation of four newly identified promoters was significantly augmented by an LRH-1 expression vector in a co-transfection assay. There were 1038 genes located within 20 kb of a peak and a gene set enrichment analysis showed that genes identified by our ChIP-seq analysis are highly correlated with genes activated by an FXR-VP16 adenovirus in primary mouse hepatocytes providing functional relevance to the genome-wide binding study. Gene Ontology analysis showed FXR-binding sites close to many genes in lipid, fatty acid and steroid metabolism. Other broad gene clusters related to metabolism, transport, signaling and glycolysis were also significantly enriched. Thus, FXR may have a much wider role in cellular metabolism than previously appreciated.


Asunto(s)
Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Elementos de Respuesta , Animales , Sitios de Unión , Línea Celular , Inmunoprecipitación de Cromatina , Regulación de la Expresión Génica , Genoma , Masculino , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
10.
J Biol Chem ; 285(5): 3035-43, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19996107

RESUMEN

Farnesoid X receptor (FXR) plays important regulatory roles in bile acid, lipoprotein, and glucose homeostasis. Here, we have utilized Fxr(-/-) mice and mice deficient in scavenger receptor class B type I (SR-BI), together with an FXR-specific agonist and adenovirus expressing hepatocyte nuclear factor 4alpha or constitutively active FXR, to identify the mechanisms by which activation of FXR results in hypocholesterolemia. We identify a novel pathway linking FXR to changes in hepatic p-JNK, hepatocyte nuclear factor 4alpha, and finally SR-BI. Importantly, we demonstrate that the FXR-dependent increase in SR-BI results in both hypocholesterolemia and an increase in reverse cholesterol transport, a process involving the transport of cholesterol from peripheral macrophages to the liver for excretion into the feces. In addition, we demonstrate that FXR activation also induces an SR-BI-independent increase in reverse cholesterol transport and reduces intestinal cholesterol absorption. Together, these data indicate that FXR is a promising therapeutic target for treatment of hypercholesterolemia and coronary heart disease.


Asunto(s)
Colesterol/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Depuradores de Clase B/genética , Absorción , Animales , Línea Celular , Enfermedad Coronaria/metabolismo , Glucosa/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Homeostasis , Humanos , Lipoproteínas/metabolismo , Hígado/metabolismo , Ratones , Modelos Biológicos , Receptores Depuradores de Clase B/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 30(6): 1174-80, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20299684

RESUMEN

OBJECTIVE: To generate Abcg1(-/-) Apoe(-/-) mice to understand the mechanism and cell types involved in changes in atherosclerosis after loss of ABCG1. METHODS AND RESULTS: ABCG1 is highly expressed in macrophages and endothelial cells, 2 cell types that play important roles in the development of atherosclerosis. Abcg1(-/-) Apoe(-/-) and Apoe(-/-) mice and recipient Apoe(-/-) mice that had undergone transplantation with bone marrow from Apoe(-/-) or Abcg1(-/-) Apoe(-/-) mice were fed a Western diet for 12 or 16 weeks before quantification of atherosclerotic lesions. These studies demonstrated that loss of ABCG1 from all tissues, or from only hematopoietic cells, was associated with significantly smaller lesions that contained increased numbers of TUNEL- and cleaved caspase 3-positive apoptotic Abcg1(-/-) macrophages. We also identified specific oxysterols that accumulate in the brains and macrophages of the Abcg1(-/-) Apoe(-/-) mice. These oxysterols promoted apoptosis and altered the expression of proapoptotic genes when added to macrophages in vitro. CONCLUSIONS: Loss of ABCG1 from all tissues or from only hematopoietic cells results in smaller atherosclerotic lesions populated with increased apoptotic macrophages, by processes independent of ApoE. Specific oxysterols identified in tissues of Abcg1(-/-) Apoe(-/-) mice may be critical because they induce macrophage apoptosis and the expression of proapoptotic genes.


Asunto(s)
Apolipoproteínas E/deficiencia , Apoptosis , Aterosclerosis/prevención & control , Colesterol/metabolismo , Lipoproteínas/deficiencia , Macrófagos/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Apolipoproteínas E/genética , Apoptosis/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Trasplante de Médula Ósea , Encéfalo/metabolismo , Encéfalo/patología , Caspasa 3/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Genotipo , Etiquetado Corte-Fin in Situ , Lipoproteínas/genética , Lipoproteínas LDL/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Oxidación-Reducción , Fenotipo , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/metabolismo , Factores de Tiempo
12.
Trends Biochem Sci ; 31(10): 572-80, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16908160

RESUMEN

The farnesoid X receptor (FXR) is a ligand-activated transcription factor and a member of the nuclear receptor superfamily. In the past six years, remarkable inroads have been made into determining the functional importance of FXR. This receptor has been shown to have crucial roles in controlling bile acid homeostasis, lipoprotein and glucose metabolism, hepatic regeneration, intestinal bacterial growth and the response to hepatotoxins. Thus, the development of FXR agonists might prove useful for the treatment of diabetes, cholesterol gallstones, and hepatic and intestinal toxicity.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Animales , Ácidos y Sales Biliares/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Metabolismo de los Lípidos/fisiología , Hígado/citología , Hígado/metabolismo , Modelos Biológicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/genética
13.
Cell Metab ; 33(8): 1671-1684.e4, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34270928

RESUMEN

FXR agonists are used to treat non-alcoholic fatty liver disease (NAFLD), in part because they reduce hepatic lipids. Here, we show that FXR activation with the FXR agonist GSK2324 controls hepatic lipids via reduced absorption and selective decreases in fatty acid synthesis. Using comprehensive lipidomic analyses, we show that FXR activation in mice or humans specifically reduces hepatic levels of mono- and polyunsaturated fatty acids (MUFA and PUFA). Decreases in MUFA are due to FXR-dependent repression of Scd1, Dgat2, and Lpin1 expression, which is independent of SHP and SREBP1c. FXR-dependent decreases in PUFAs are mediated by decreases in lipid absorption. Replenishing bile acids in the diet prevented decreased lipid absorption in GSK2324-treated mice, suggesting that FXR reduces absorption via decreased bile acids. We used tissue-specific FXR KO mice to show that hepatic FXR controls lipogenic genes, whereas intestinal FXR controls lipid absorption. Together, our studies establish two distinct pathways by which FXR regulates hepatic lipids.


Asunto(s)
Ácidos y Sales Biliares , Enfermedad del Hígado Graso no Alcohólico , Animales , Bilis , Ácidos y Sales Biliares/metabolismo , Humanos , Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Fosfatidato Fosfatasa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
14.
Cell Metab ; 1(2): 121-31, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16054053

RESUMEN

Here we demonstrate that the ABC transporter ABCG1 plays a critical role in lipid homeostasis by controlling both tissue lipid levels and the efflux of cellular cholesterol to HDL. Targeted disruption of Abcg1 in mice has no effect on plasma lipids but results in massive accumulation of both neutral lipids and phospholipids in hepatocytes and in macrophages within multiple tissues following administration of a high-fat and -cholesterol diet. In contrast, overexpression of human ABCG1 protects murine tissues from dietary fat-induced lipid accumulation. Finally, we show that cholesterol efflux to HDL specifically requires ABCG1, whereas efflux to apoA1 requires ABCA1. These studies identify Abcg1 as a key gene involved in both cholesterol efflux to HDL and in tissue lipid homeostasis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Colesterol/metabolismo , Regulación de la Expresión Génica , Metabolismo de los Lípidos , Lipoproteínas HDL/metabolismo , Lipoproteínas/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Animales , Compuestos Azo/farmacología , Colorantes/farmacología , Femenino , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Hibridación in Situ , Operón Lac , Hígado/metabolismo , Pulmón/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN/metabolismo , ARN Mensajero/metabolismo
15.
Cell Metab ; 1(3): 201-13, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16054063

RESUMEN

Macrophages play a central role in the development of atherosclerosis through the accumulation of oxidized LDL (oxLDL). AIM (Spalpha/Api6) has previously been shown to promote macrophage survival; however, its function in atherogenesis is unknown. Here we identify AIM as a critical factor that protects macrophages from the apoptotic effects of oxidized lipids. AIM protein is induced in response to oxLDL loading and is highly expressed in foam cells within atherosclerotic lesions. Interestingly, both expression of AIM in lesions and its induction by oxidized lipids require the action of LXR/RXR heterodimers. AIM-/- macrophages are highly susceptible to oxLDL-induced apoptosis in vitro and undergo accelerated apoptosis in atherosclerotic lesions in vivo. Moreover, early atherosclerotic lesions in AIM-/-LDLR-/- double knockout mice are dramatically reduced when compared to AIM+/+LDLR-/- controls. We conclude that AIM production facilitates macrophage survival within atherosclerotic lesions and that loss of AIM decreases early lesion development by increasing macrophage apoptosis.


Asunto(s)
Arteriosclerosis/etiología , Macrófagos/patología , Receptores Inmunológicos/fisiología , Animales , Apoptosis , Línea Celular , Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Lipoproteínas LDL/metabolismo , Receptores X del Hígado , Ratones , Ratones Noqueados , Receptores Nucleares Huérfanos , Receptores Citoplasmáticos y Nucleares/fisiología , Receptores Inmunológicos/deficiencia , Receptores de LDL/deficiencia , Receptor alfa X Retinoide/fisiología
16.
J Lipid Res ; 51(11): 3185-95, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20675829

RESUMEN

ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3-6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Epidermis/metabolismo , Regulación de la Expresión Génica , Queratinocitos/metabolismo , Lipoproteínas/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Epidérmicas , Epidermis/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Hidrocarburos Fluorados/farmacología , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Lipoproteínas/metabolismo , Receptores X del Hígado , Ratones , Receptores Nucleares Huérfanos/metabolismo , PPAR delta/metabolismo , Permeabilidad/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esteroles/farmacología , Sulfonamidas/farmacología , Regulación hacia Arriba/efectos de los fármacos
17.
J Lipid Res ; 51(1): 169-81, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19633360

RESUMEN

ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of beta-galactosidase-stained tissue sections from Abcg1(-/-)LacZ and Abcg4(-/-)LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4(-/-) mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/biosíntesis , Envejecimiento/metabolismo , Sistema Nervioso Central/metabolismo , Embrión de Mamíferos/metabolismo , Lipoproteínas/biosíntesis , Retina/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Envejecimiento/genética , Animales , Conducta Animal , Encéfalo/embriología , Encéfalo/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/embriología , Condicionamiento Clásico , Miedo , Regulación del Desarrollo de la Expresión Génica , Lipoproteínas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Retina/embriología , Retina/ultraestructura , beta-Galactosidasa/genética
18.
Biochim Biophys Acta ; 1791(7): 584-93, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19416657

RESUMEN

Every cell is separated from its external environment by a lipid membrane. Survival depends on the regulated and selective transport of nutrients, waste products and regulatory molecules across these membranes, a process that is often mediated by integral membrane proteins. The largest and most diverse of these membrane transport systems is the ATP binding cassette (ABC) family of membrane transport proteins. The ABC family is a large evolutionary conserved family of transmembrane proteins (>250 members) present in all phyla, from bacteria to Homo sapiens, which require energy in the form of ATP hydrolysis to transport substrates against concentration gradients. In prokaryotes the majority of ABC transporters are involved in the transport of nutrients and other macromolecules into the cell. In eukaryotes, with the exception of the cystic fibrosis transmembrane conductance regulator (CFTR/ABCC7), ABC transporters mobilize substrates from the cytoplasm out of the cell or into specific intracellular organelles. This review focuses on the members of the ABCG subfamily of transporters, which are conserved through evolution in multiple taxa. As discussed below, these proteins participate in multiple cellular homeostatic processes, and functional mutations in some of them have clinical relevance in humans.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Transportador de Casetes de Unión a ATP, Subfamilia G , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8 , Transportadoras de Casetes de Unión a ATP/clasificación , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas/fisiología , Ratones , Ratones Noqueados
19.
Nat Commun ; 11(1): 644, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005828

RESUMEN

Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Hígado/metabolismo , Factor de Transcripción MafG/genética , Obesidad/genética , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Anciano , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Factor de Transcripción MafG/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Obesidad/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
20.
FEBS Lett ; 582(1): 10-8, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18023284

RESUMEN

Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily, has been shown to be important in controlling numerous metabolic pathways; these include roles in maintaining bile acid, lipid and glucose homeostasis, in preventing intestinal bacterial infection and gallstone formation and in modulating liver regeneration and tumorigenesis. The accumulating data suggest that FXR may be a pharmaceutical target for the treatment of certain metabolic diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enfermedades Metabólicas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Bacterias/crecimiento & desarrollo , Ácidos y Sales Biliares/metabolismo , Proteínas de Unión al ADN/fisiología , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Neoplasias Hepáticas/fisiopatología , Regeneración Hepática , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA