Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(51): 18261-6, 2014 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-25489091

RESUMEN

The androgen receptor (AR) is a key driver of prostate cancer (PC), even in the state of castration-resistant PC (CRPC) and frequently even after treatment with second-line hormonal therapies such as abiraterone and enzalutamide. The persistence of AR activity via both ligand-dependent and ligand-independent mechanisms (including constitutively active AR splice variants) highlights the unmet need for alternative approaches to block AR signaling in CRPC. We investigated the transcription factor GATA-binding protein 2 (GATA2) as a regulator of AR signaling and an actionable therapeutic target in PC. We demonstrate that GATA2 directly promotes expression of both full-length and splice-variant AR, resulting in a strong positive correlation between GATA2 and AR expression in both PC cell lines and patient specimens. Conversely, GATA2 expression is repressed by androgen and AR, suggesting a negative feedback regulatory loop that, upon androgen deprivation, derepresses GATA2 to contribute to AR overexpression in CRPC. Simultaneously, GATA2 is necessary for optimal transcriptional activity of both full-length and splice-variant AR. GATA2 colocalizes with AR and Forkhead box protein A1 on chromatin to enhance recruitment of steroid receptor coactivators and formation of the transcriptional holocomplex. In agreement with these important functions, high GATA2 expression and transcriptional activity predicted worse clinical outcome in PC patients. A GATA2 small molecule inhibitor suppressed the expression and transcriptional function of both full-length and splice-variant AR and exerted potent anticancer activity against PC cell lines. We propose pharmacological inhibition of GATA2 as a first-in-field approach to target AR expression and function and improve outcomes in CRPC.


Asunto(s)
Factor de Transcripción GATA2/fisiología , Coactivadores de Receptor Nuclear/metabolismo , Receptores Androgénicos/metabolismo , Proliferación Celular , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Masculino , Pronóstico , Receptores Androgénicos/fisiología , Transducción de Señal , Transcripción Genética/fisiología
2.
Cancer Res ; 82(10): 1872-1889, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35303054

RESUMEN

Osteosarcoma is the most common malignancy of the bone, yet the survival for patients with osteosarcoma is virtually unchanged over the past 30 years. This is principally because development of new therapies is hampered by a lack of recurrent mutations that can be targeted in osteosarcoma. Here, we report that epigenetic changes via mRNA methylation holds great promise to better understand the mechanisms of osteosarcoma growth and to develop targeted therapeutics. In patients with osteosarcoma, the RNA demethylase ALKBH5 was amplified and higher expression correlated with copy-number changes. ALKBH5 was critical for promoting osteosarcoma growth and metastasis, yet it was dispensable for normal cell survival. Methyl RNA immunoprecipitation sequencing analysis and functional studies showed that ALKBH5 mediates its protumorigenic function by regulating m6A levels of histone deubiquitinase USP22 and the ubiquitin ligase RNF40. ALKBH5-mediated m6A deficiency in osteosarcoma led to increased expression of USP22 and RNF40 that resulted in inhibition of histone H2A monoubiquitination and induction of key protumorigenic genes, consequently driving unchecked cell-cycle progression, incessant replication, and DNA repair. RNF40, which is historically known to ubiquitinate H2B, inhibited H2A ubiquitination in cancer by interacting with and affecting the stability of DDB1-CUL4-based ubiquitin E3 ligase complex. Taken together, this study directly links increased activity of ALKBH5 with dysregulation of USP22/RNF40 and histone ubiquitination in cancers. More broadly, these results suggest that m6A RNA methylation works in concert with other epigenetic mechanisms to control cancer growth. SIGNIFICANCE: RNA demethylase ALKBH5 upregulates USP22 and RNF40 to inhibit histone H2A ubiquitination and induces expression of key replication and DNA repair-associated genes, driving osteosarcoma progression.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Osteosarcoma , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Histonas/metabolismo , Humanos , Metilación , Osteosarcoma/genética , ARN/genética , ARN/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Ubiquitinas/genética
3.
Sci Rep ; 8(1): 9293, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915240

RESUMEN

Ehrlichia chaffeensis, a tick-transmitted rickettsial bacterium, is the causative agent of human monocytic ehrlichiosis. Biochemical characterization of this and other related Rickettsiales remains a major challenge, as they require a host cell for their replication. We investigated the use of an axenic medium for E. chaffeensis growth, assessed by protein and DNA synthesis, in the absence of a host cell. E. chaffeensis organisms harvested from in vitro cultures grown in a vertebrate cell line were fractionated into infectious dense-core cells (DC) and the non-infectious replicating form, known as reticulate cells (RC) by renografin density gradient centrifugation and incubated in the axenic medium containing amino acids, nucleotides, and different energy sources. Bacterial protein and DNA synthesis were observed in RCs in response to glucose-6-phosphate, although adenosine triphosphate, alpha-ketoglutarate or sodium acetate supported protein synthesis. The biosynthetic activity could not be detected in DCs in the axenic medium. While the data demonstrate de novo protein and DNA synthesis under axenic conditions for E. chaffeensis RCs, additional modifications are required in order to establish conditions that support bacterial replication, and transition to DCs.


Asunto(s)
Cultivo Axénico , ADN/biosíntesis , Ehrlichia chaffeensis/metabolismo , Biosíntesis de Proteínas , Carbono/farmacología , Sistema Libre de Células , Diatrizoato de Meglumina/metabolismo , Ehrlichia chaffeensis/ultraestructura , Concentración de Iones de Hidrógeno , Modelos Biológicos , ARN/biosíntesis , ARN Ribosómico 16S/genética
4.
Sci Adv ; 4(10): eaar8263, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30306128

RESUMEN

The importance of RNA methylation in biological processes is an emerging focus of investigation. We report that altering m6A levels by silencing either N 6-adenosine methyltransferase METTL14 (methyltransferase-like 14) or demethylase ALKBH5 (ALKB homolog 5) inhibits cancer growth and invasion. METTL14/ALKBH5 mediate their protumorigenic function by regulating m6A levels of key epithelial-mesenchymal transition and angiogenesis-associated transcripts, including transforming growth factor-ß signaling pathway genes. Using MeRIP-seq (methylated RNA immunoprecipitation sequencing) analysis and functional studies, we find that these target genes are particularly sensitive to changes in m6A modifications, as altered m6A status leads to aberrant expression of these genes, resulting in inappropriate cell cycle progression and evasion of apoptosis. Our results reveal that METTL14 and ALKBH5 determine the m6A status of target genes by controlling each other's expression and by inhibiting m6A reader YTHDF3 (YTH N 6-methyladenosine RNA binding protein 3), which blocks RNA demethylase activity. Furthermore, we show that ALKBH5/METTL14 constitute a positive feedback loop with RNA stability factor HuR to regulate the stability of target transcripts. We discover that hypoxia alters the level/activity of writers, erasers, and readers, leading to decreased m6A and consequently increased expression of target transcripts in cancer cells. This study unveils a previously undefined role for m6A in cancer and shows that the collaboration among writers-erasers-readers sets up the m6A threshold to ensure the stability of progrowth/proliferation-specific genes, and protumorigenic stimulus, such as hypoxia, perturbs that m6A threshold, leading to uncontrolled expression/activity of those genes, resulting in tumor growth, angiogenesis, and progression.


Asunto(s)
Adenosina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Metiltransferasas/metabolismo , Neoplasias/patología , Proteínas de Unión al ARN/metabolismo , Adenosina/genética , Adenosina/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Retroalimentación Fisiológica , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metiltransferasas/genética , Ratones Desnudos , Neoplasias/genética , Neoplasias/metabolismo , Neovascularización Patológica/genética , Proteínas de Unión al ARN/genética , Hipoxia Tumoral/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA