Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 32(11): 18650-18663, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859016

RESUMEN

Laser absorption Doppler velocimeters use a crossed-beam configuration to cancel errors due to laser frequency drift and absorption model uncertainty. This configuration complicates the spatial interpretation of the measurement since the two beams sample different volumes of gas. Here, we achieve single-beam velocimetry with a portable dual comb spectrometer (DCS) with high frequency accuracy and stability enabled by GPS-referencing, and a new high-temperature water vapor absorption database. We measure the inlet flow in a supersonic ramjet engine and demonstrate single-beam measurements that are on average within 19 m/s of concurrent crossed-beam measurements. We estimate that the DCS and the new database contribute 1.6 and 13 m/s to this difference respectively.

2.
Opt Express ; 32(11): 19837-19853, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859109

RESUMEN

Systematic errors are observed in dual comb spectroscopy when pulses from the two sources travel in a common fiber before interrogating the sample of interest. When sounding a molecular gas, these errors distort both the line shapes and retrieved concentrations. Simulations of dual comb interferograms based on a generalized nonlinear Schrodinger equation highlight two processes for these systematic errors. Self-phase modulation changes the spectral content of the field interrogating the molecular response but affects the recorded spectral baseline and absorption features differently, leading to line intensity errors. Cross-phase modulation modifies the relative inter-pulse delay, thus introducing interferogram sampling errors and creating a characteristic asymmetric distortion on spectral lines. Simulations capture the shape and amplitude of experimental errors which are around 0.1% on spectral transmittance residuals for 10 mW of total average power in 10 meters of common fiber, scaling up to above 0.6% for 20 mW and 60 m.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA