Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966001

RESUMEN

The free energy cost of forming a cavity in a solvent is a fundamental concept in rationalizing the solvation of molecules and ions. A detailed understanding of the factors governing cavity formation in bulk solutions has inter alia enabled the formulation of models that account for this contribution in coarse-grained implicit solvation methods. Here, we employ classical molecular dynamics simulations and multistate Bennett acceptance ratio free energy sampling to systematically study cavity formation at a wide range of metal-water interfaces. We demonstrate that the obtained size- and position-dependence of cavitation energies can be fully rationalized by a geometric Gibbs model, which considers that the creation of the metal-cavity interface necessarily involves the removal of interfacial solvent. This so-called competitive adsorption effect introduces a substrate dependence to the interfacial cavity formation energy that is missed in existing bulk cavitation models. Using expressions from scaled particle theory, this substrate dependence is quantitatively reproduced by the Gibbs model through simple linear relations with the adsorption energy of a single water molecule. Besides providing a better general understanding of interfacial solvation, this paves the way for the derivation and efficient parametrization of more accurate interface-aware implicit solvation models needed for reliable high-throughput calculations toward improved electrocatalysts.

2.
J Chem Phys ; 155(19): 194702, 2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34800953

RESUMEN

An accurate atomistic treatment of aqueous solid-liquid interfaces necessitates the explicit description of interfacial water ideally via ab initio molecular dynamics simulations. Many applications, however, still rely on static interfacial water models, e.g., for the computation of (electro)chemical reaction barriers and focus on a single, prototypical structure. In this work, we systematically study the relation between density functional theory-derived static and dynamic interfacial water models with specific focus on the water-Pt(111) interface. We first introduce a general construction protocol for static 2D water layers on any substrate, which we apply to the low index surfaces of Pt. Subsequently, we compare these with structures from a broad selection of reference works based on the Smooth Overlap of Atomic Positions descriptor. The analysis reveals some structural overlap between static and dynamic water ensembles; however, static structures tend to overemphasize the in-plane hydrogen bonding network. This feature is especially pronounced for the widely used low-temperature hexagonal ice-like structure. In addition, a complex relation between structure, work function, and adsorption energy is observed, which suggests that the concentration on single, static water models might introduce systematic biases that are likely reduced by averaging over consistently created structural ensembles, as introduced here.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA