Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Hum Mol Genet ; 33(4): 299-317, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862125

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an autosomal dominant hereditary disorder, caused by an expansion of polyglutamine in the ataxin-3 protein. SCA3 symptoms include progressive motor decline caused by an atrophy of the cerebellum and brainstem. However, it was recently reported that SCA3 patients also suffer from the cerebellar cognitive affective syndrome. The majority of SCA3 patients exhibit cognitive decline and approximately half of them suffer from depression and anxiety. The necessity to find a combined therapy for both motor and cognitive deficits in a SCA3 mouse model is required for the development of SCA3 treatment. Here, we demonstrated that the SCA3-84Q transgenic mice exhibited anxiety over the novel brightly illuminated environment in the open field, novelty suppressed feeding, and light-dark place preference tests. Moreover, SCA3-84Q mice also suffered from a decline in recognition memory during the novel object recognition test. SCA3-84Q mice also demonstrated floating behavior during the Morris water maze that can be interpreted as a sign of low mood and aversion to activity, i.e. depressive-like state. SCA3-84Q mice also spent more time immobile during the forced swimming and tail suspension tests which is also evidence for depressive-like behavior. Therefore, the SCA3-84Q mouse model may be used as a model system to test the possible treatments for both ataxia and non-motor symptoms including depression, anxiety, and memory loss.


Asunto(s)
Enfermedad de Machado-Joseph , Humanos , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Depresión/genética , Cerebelo/metabolismo , Ataxina-3/genética , Ataxina-3/metabolismo , Ratones Transgénicos , Ansiedad/genética
2.
Hum Mol Genet ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727562

RESUMEN

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is reported to be the most common type of autosomal dominant cerebellar ataxia (ADCA). SCA3 patients suffer from a progressive decline in motor coordination and other disease-associated symptoms. Moreover, recent studies have reported that SCA3 patients also exhibit symptoms of cerebellar cognitive affective syndrome (CCAS). We previously observed signs of CCAS in mouse model of SCA3. Particularly, SCA3-84Q mice suffer from anxiety, recognition memory decline, and also exhibit signs of low mood and aversion to activity. Here we studied the effect of long-term injections of SK channels activator chlorzoxazone (CHZ) together and separately with the folic acid (FA) on the cerebellar Purkinje cell (PC) firing and histology, and also on the motor and cognitive functions as well as mood alterations in SCA3-84Q hemizygous transgenic mice. We realized that both CHZ and CHZ-FA combination had similar positive effect on pure cerebellum impairments including PC firing precision, PC histology, and motor performance in SCA3-84Q mice. However, only the CHZ-FA combination, but not CHZ, had significantly ameliorated the signs of anxiety and depression, and also noticeably improved recognition memory in SCA3-84Q mice. Our results suggest that the combination therapy for both ataxia and non-motor symptoms is required for the complex treatment of ADCA.

3.
Cerebellum ; 23(1): 145-161, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36680704

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is a hereditary disorder, caused by an expansion of polyglutamine in the ataxin-2 protein. Although the mutant protein is expressed throughout all the cell and organ types, the cerebellum is primarily affected. The disease progression is mainly accompanied by a decline in motor functions. However, the disturbances in cognitive abilities and low mental state have also been reported in patients. Recent evidence suggests that the cerebellar functionality expands beyond the motor control. Thus, the cerebellum turned out to be involved into the language, verbal working, and spatial memory; executive functions such as working memory, planning, organizing, and strategy formation; and emotional processing. Here, we used the transgenic SCA2-58Q mice to evaluate their anxiety, cognitive functions, and mood alterations. The expression of the mutant ataxin-2 specifically in the cerebellar Purkinje cells (PCs) in SCA2-58Q mice allowed us to study the direct involvement of the cerebellum into the cognitive and affective control. We determined that SCA2-58Q mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Our results support the idea of cerebellar involvement in cognitive control and the handling of emotions.


Asunto(s)
Disfunción Cognitiva , Ataxias Espinocerebelosas , Humanos , Ratones , Animales , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/psicología , Cerebelo , Células de Purkinje , Ratones Transgénicos , Disfunción Cognitiva/genética , Modelos Animales de Enfermedad
4.
Molecules ; 28(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298879

RESUMEN

Dracocephalum jacutense Peschkova is a rare and endangered species of the genus Dracocephalum of the Lamiaceae family. The species was first described in 1997 and listed in the Red Data Book of Yakutia. Significant differences in the multicomponent composition of extracts from D. jacutense collected in the natural environment and successfully introduced in the Botanical Garden of Yakutsk were identified by a team of authors earlier in a large study. In this work, we studied the chemical composition of the leaves, stem, and inflorescences of D. jacutense using the tandem mass spectrometry method. Only three cenopopulations of D. jacutense were found by us in the territory of the early habitat-in the vicinity of the village of Sangar, Kobyaysky district of Yakutia. The aboveground phytomass of the plant was collected, processed and dried as separate parts of the plant: inflorescences, stem and leaves. Firstly, a total of 128 compounds, 70% of which are polyphenols, were tentatively identified in extracts of D. jacutense. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols. The inflorescences are the richest in polyphenols (73 polyphenolic compounds were identified), while 33 and 22 polyphenols were found in the leaves and stems, respectively. A high level of identity for polyphenolic compounds in different parts of the plant is noted for flavanones (80%), followed by flavonols (25%), phenolic acids (15%), and flavones (13%). Furthermore, 78 compounds were identified for the first time in representatives of the genus Dracocephalum, including 50 polyphenolic compounds and 28 compounds of other chemical groups. The obtained results testify to the unique composition of polyphenolic compounds in different parts of D. jacutense.


Asunto(s)
Flavanonas , Flavonas , Lamiaceae , Cromatografía Líquida de Alta Presión/métodos , Polifenoles/química , Flavonas/análisis , Extractos Vegetales/química , Flavonoles/análisis , Espectrometría de Masas en Tándem , Flavanonas/análisis , Lamiaceae/química
5.
Cerebellum ; 21(5): 742-749, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34978024

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is an incurable hereditary disorder accompanied by cerebellar degeneration following ataxic symptoms. The causative gene for SCA2 is ATXN2. The ataxin-2 protein is involved in RNA metabolism; the polyQ expansion may interrupt ataxin-2 interaction with its molecular targets, thus representing a loss-of-function mutation. However, mutant ataxin-2 protein also displays the features of gain-of-function mutation since it forms the aggregates in SCA2 cells and also enhances the IP3-induced calcium release in affected neurons. The cerebellar Purkinje cells (PCs) are primarily affected in SCA2. Their tonic pacemaker activity is crucial for the proper cerebellar functioning. Disturbances in PC pacemaking are observed in many ataxic disorders. The abnormal intrinsic pacemaking was reported in mouse models of episodic ataxia type 2 (EA2), SCA1, SCA2, SCA3, SCA6, Huntington's disease (HD), and in some other murine models of the disorders associated with the cerebellar degeneration. In our studies using SCA2-58Q transgenic mice via cerebellar slice recording and in vivo recording from urethane-anesthetized mice and awake head-fixed mice, we have demonstrated the impaired firing frequency and irregularity of PCs in these mice. PC pacemaker activity is regulated by SK channels. The pharmacological activation of SK channels has demonstrated some promising results in the electrophysiological experiments on EA2, SCA1, SCA2, SCA3, SCA6, HD mice, and also on mutant CACNA1A mice. In our studies, we have reported that the SK activators CyPPA and NS309 converted bursting activity into tonic, while oral treatment with CyPPA and NS13001 significantly improved motor performance and PC morphology in SCA2 mice. The i.p. injections of chlorzoxazone (CHZ) during in vivo recording sessions converted bursting cells into tonic in anesthetized SCA2 mice. And, finally, long-term injections of CHZ recovered the precision of PC pacemaking activity in awake SCA2 mice and alleviated their motor decline. Thus, the SK activation can be used as a potential way to treat SCA2 and other diseases accompanied by cerebellar degeneration.


Asunto(s)
Ataxina-2 , Ataxias Espinocerebelosas , Animales , Ataxina-2/metabolismo , Cerebelo , Ratones , Ratones Transgénicos , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo
6.
Cerebellum ; 17(5): 590-600, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29876801

RESUMEN

Cerebellar Purkinje cells (PCs) and cerebellar pathways are primarily affected in many autosomal dominant cerebellar ataxias. PCs generate complex spikes (CS) in vivo when activated by climbing fiber (CF) which rise from the inferior olive. In this study, we investigated the functional state of the CF-PC circuitry in the transgenic mouse model of spinocerebellar ataxia type 2 (SCA2), a polyglutamine neurodegenerative genetic disease. In our experiments, we used an extracellular single-unit recording method to compare the PC activity pattern and the CS shape in age-matched wild-type mice and SCA2-58Q transgenic mice. We discovered no alterations in the CS properties of PCs in aging SCA2 mice. To examine the integrity of the olivocerebellar pathway, we applied harmaline, an alkaloid that acts directly on the inferior olive neurons. The pharmacological stimulation of olivocerebellar circuit by harmaline uncovered disturbances in SCA2-58Q PC activity pattern and in the complex spike shape when compared with age-matched wild-type cells. The abnormalities in the CF-PC circuitry were aggravated with age. We propose that alterations in CF-PC circuitry represent one of potential causes of ataxic symptoms in SCA2 and in other SCAs.


Asunto(s)
Cerebelo/fisiopatología , Neuronas/fisiología , Núcleo Olivar/fisiopatología , Ataxias Espinocerebelosas/fisiopatología , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Cerebelo/efectos de los fármacos , Modelos Animales de Enfermedad , Harmalina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiopatología , Neuronas/efectos de los fármacos , Núcleo Olivar/efectos de los fármacos
7.
J Neurosci ; 36(1): 125-41, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26740655

RESUMEN

In Huntington's disease (HD), mutant Huntingtin (mHtt) protein causes striatal neuron dysfunction, synaptic loss, and eventual neurodegeneration. To understand the mechanisms responsible for synaptic loss in HD, we developed a corticostriatal coculture model that features age-dependent dendritic spine loss in striatal medium spiny neurons (MSNs) from YAC128 transgenic HD mice. Age-dependent spine loss was also observed in vivo in YAC128 MSNs. To understand the causes of spine loss in YAC128 MSNs, we performed a series of mechanistic studies. We previously discovered that mHtt protein binds to type 1 inositol (1,4,5)-trisphosphate receptor (InsP3R1) and increases its sensitivity to activation by InsP3. We now report that the resulting increase in steady-state InsP3R1 activity reduces endoplasmic reticulum (ER) Ca(2+) levels. Depletion of ER Ca(2+) leads to overactivation of the neuronal store-operated Ca(2+) entry (nSOC) pathway in YAC128 MSN spines. The synaptic nSOC pathway is controlled by the ER resident protein STIM2. We discovered that STIM2 expression is elevated in aged YAC128 striatal cultures and in YAC128 mouse striatum. Knock-down of InsP3R1 expression by antisense oligonucleotides or knock-down or knock-out of STIM2 resulted in normalization of nSOC and rescue of spine loss in YAC128 MSNs. The selective nSOC inhibitor EVP4593 was identified in our previous studies. We now demonstrate that EVP4593 reduces synaptic nSOC and rescues spine loss in YAC128 MSNs. Intraventricular delivery of EVP4593 in YAC128 mice rescued age-dependent striatal spine loss in vivo. Our results suggest EVP4593 and other inhibitors of the STIM2-dependent nSOC pathway as promising leads for HD therapeutic development. SIGNIFICANCE STATEMENT: In Huntington's disease (HD) mutant Huntingtin (mHtt) causes early corticostriatal synaptic dysfunction and eventual neurodegeneration of medium spine neurons (MSNs) through poorly understood mechanisms. We report here that corticostriatal cocultures prepared from YAC128 HD mice feature age-dependent MSN spine loss, mirroring YAC128 MSN spine loss in vivo. This finding establishes a system for mechanistic studies of synaptic instability in HD. We use it to demonstrate that sensitization of type 1 inositol (1,4,5)-trisphosphate receptors by mHtt, which depletes endoplasmic reticulum calcium, contributes to synaptotoxic enhancement of STIM2-dependent store-operated calcium (SOC) entry. Treatment with EVP4593, a neuroprotective inhibitor of neuronal SOC channels, rescues YAC128 MSN spine loss both in vitro and in vivo. These results suggest that enhanced neuronal SOC causes synaptic loss in HD-afflicted MSNs.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cuerpo Estriado/metabolismo , Enfermedad de Huntington/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Animales , Células Cultivadas , Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos
8.
Semin Cell Dev Biol ; 40: 127-33, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25846864

RESUMEN

Neurodegenerative disorders, such as spinocerebellar ataxias (SCAs) and Alzheimer's disease (AD) represent a huge scientific and medical question, but the molecular mechanisms of these diseases are still not clear. There is increasing evidence that neuronal calcium signaling is abnormal in many neurodegenerative disorders. Abnormal neuronal calcium release from the endoplasmic reticulum may result in disturbances of cell homeostasis, synaptic dysfunction, and eventual cell death. Neuronal loss is observed in most cases of neurodegenerative diseases. Recent experimental evidence supporting the role of neuronal calcium signaling in the pathogenesis of SCAs and AD is discussed in this review.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Señalización del Calcio , Ataxias Espinocerebelosas/metabolismo , Enfermedad de Alzheimer/patología , Animales , Humanos , Ataxias Espinocerebelosas/patología , Sinapsis/patología
9.
J Neurophysiol ; 115(6): 2840-51, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26984424

RESUMEN

Cerebellar Purkinje cells (PCs) are primarily affected in many spinocerebellar ataxias (SCA). In this study we investigated functional activity of PCs in transgenic mouse model of SCA2, a polyglutamine neurodegenerative hereditary disorder. In our studies we used extracellular single-unit recording method to compare spontaneous activity of PCs in age-matched wild-type mice and SCA2-58Q transgenic mice. We discovered that the fraction of PCs with bursting and an irregular pattern of spontaneous activity dramatically increases in aged SCA2-58Q mice compared with wild-type littermates. Small-conductance calcium-activated potassium (SK) channels play an important role in determining firing rate of PCs. Indeed, we demonstrated that intraperitoneal (IP) injection of SK channel inhibitor NS8593 induces an irregular pattern of PC activity in wild-type mice. Furthermore, we demonstrated that IP injection of SK channel-positive modulator chlorzoxazone (CHZ) decreases spontaneous firing rate of cerebellar PCs. Finally, we have shown that IP injections with CHZ normalize firing activity of cerebellar PCs from aging SCA2-58Q mice. We propose that alterations in PC firing patterns is one of potential causes of ataxic symptoms in SCA2 and in other SCAs and that positive modulators of SK channels can be used to normalize activity of PCs and alleviate ataxic phenotype in patients with SCA.


Asunto(s)
Células de Purkinje/fisiología , Ataxias Espinocerebelosas/fisiopatología , 1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Envejecimiento/fisiología , Animales , Clorzoxazona/farmacología , Modelos Animales de Enfermedad , Inyecciones Intraperitoneales , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Transgénicos , Microelectrodos , Neurotransmisores/farmacología , Células de Purkinje/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
10.
J Neurosci ; 32(37): 12786-96, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22973002

RESUMEN

Spinocerebellar ataxia 2 (SCA2) is a neurodegenerative disorder characterized by progressive ataxia. SCA2 results from a poly(Q) (polyglutamine) expansion in the cytosolic protein ataxin-2 (Atx2). Cerebellar Purkinje cells (PCs) are primarily affected in SCA2, but the cause of PC dysfunction and death in SCA2 is poorly understood. In previous studies, we reported that mutant but not wild-type Atx2 specifically binds the inositol 1,4,5-trisphosphate receptor (InsP(3)R) and increases its sensitivity to activation by InsP3. We further proposed that the resulting supranormal calcium (Ca2+) release from the PC endoplasmic reticulum plays a key role in the development of SCA2 pathology. To test this hypothesis, we achieved a chronic suppression of InsP(3)R-mediated Ca2+ signaling by adenoassociated virus-mediated expression of the inositol 1,4,5-phosphatase (Inpp5a) enzyme (5PP) in PCs of a SCA2 transgenic mouse model. We determined that recombinant 5PP overexpression alleviated age-dependent dysfunction in the firing pattern of SCA2 PCs. We further discovered that chronic 5PP overexpression also rescued age-dependent motor incoordination and PC death in SCA2 mice. Our findings further support the important role of supranormal Ca2+ signaling in SCA2 pathogenesis and suggest that partial inhibition of InsP3-mediated Ca2+ signaling could provide therapeutic benefit for the patients afflicted with SCA2 and possibly other SCAs.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células de Purkinje/metabolismo , Ataxias Espinocerebelosas/fisiopatología , Animales , Ratones
11.
Sci Rep ; 13(1): 12588, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537226

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is a polyglutamine disorder caused by a pathological expansion of CAG repeats in ATXN2 gene. SCA2 is accompanied by cerebellar degeneration and progressive motor decline. Cerebellar Purkinje cells (PCs) seem to be primarily affected in this disorder. The majority of the ataxia research is focused on the motor decline observed in ataxic patients and animal models of the disease. However, recent evidence from patients and ataxic mice suggests that SCA2 can also share the symptoms of the cerebellar cognitive affective syndrome. We previously reported that SCA2-58Q PC-specific transgenic mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Here we studied the effect of the activation of the small conductance calcium-activated potassium channels (SK channels) by chlorzoxazone (CHZ) combined with the folic acid (FA) on the PC firing and also motor, cognitive and affective symptoms in SCA2-58Q mice. We realized that CHZ-FA combination improved motor and cognitive decline as well as ameliorated mood alterations in SCA2-58Q mice without affecting the firing rate of their cerebellar PCs. Our results support the idea of the combination therapy for both ataxia and non-motor symptoms in ataxic mice without affecting the firing frequency of PCs.


Asunto(s)
Disfunción Cognitiva , Ataxias Espinocerebelosas , Ratones , Animales , Clorzoxazona , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ratones Transgénicos , Disfunción Cognitiva/tratamiento farmacológico , Cognición
12.
Biochim Biophys Acta Mol Cell Res ; 1870(5): 119466, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36940741

RESUMEN

Distorted neuronal calcium signaling has been reported in many neurodegenerative disorders, including different types of spinocerebellar ataxias (SCAs). Cerebellar Purkinje cells (PCs) are primarily affected in SCAs and the disturbances in the calcium homeostasis were observed in SCA PCs. Our previous results have revealed that 3,5-dihydroxyphenylglycine (DHPG) induced greater calcium responses in SCA2-58Q PC cultures than in wild type (WT) PC cultures. Here we observed that glutamate-induced calcium release in PCs cells bodies is significantly higher in SCA2-58Q PCs from acute cerebellar slices compared to WT PCs of the same age. Recent studies have demonstrated that the stromal interaction molecule 1 (STIM1) plays an important role in the regulation of the neuronal calcium signaling in cerebellar PCs in mice. The main function of STIM1 is to regulate store-operated calcium entry through the TRPC/Orai channels formation to refill the calcium stores in the ER when it is empty. Here we demonstrated that the chronic viral-mediated expression of the small interfering RNA (siRNA) targeting STIM1 specifically in cerebellar PCs alleviates the deranged calcium signaling in SCA2-58Q PCs, rescues the spine loss in these cerebellar neurons, and also improves the motor decline in SCA2-58Q mice. Thus, our preliminary results support the important role of the altered neuronal calcium signaling in SCA2 pathology and also suggest the STIM1-mediated signaling pathway as a potential therapeutic target for treatment of SCA2 patients.


Asunto(s)
Células de Purkinje , Ataxias Espinocerebelosas , Ratones , Animales , Células de Purkinje/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Ataxias Espinocerebelosas/genética
13.
J Med Chem ; 65(1): 303-322, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34962403

RESUMEN

A series of modified N-cyclohexyl-2-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methylpyrimidin-4-amine (CyPPA) analogues were synthesized by replacing the cyclohexane moiety with different 4-substituted cyclohexane rings, tyrosine analogues, or mono- and dihalophenyl rings and were subsequently studied for their potentiation of KCa2 channel activity. Among the N-benzene-N-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-4-pyrimidinamine derivatives, halogen decoration at positions 2 and 5 of benzene-substituted 4-pyrimidineamine in compound 2q conferred a ∼10-fold higher potency, while halogen substitution at positions 3 and 4 of benzene-substituted 4-pyrimidineamine in compound 2o conferred a ∼7-fold higher potency on potentiating KCa2.2a channels, compared to that of the parent template CyPPA. Both compounds retained the KCa2.2a/KCa2.3 subtype selectivity. Based on the initial evaluation, compounds 2o and 2q were selected for testing in an electrophysiological model of spinocerebellar ataxia type 2 (SCA2). Both compounds were able to normalize the abnormal firing of Purkinje cells in cerebellar slices from SCA2 mice, suggesting the potential therapeutic usefulness of these compounds for treating symptoms of ataxia.


Asunto(s)
Cerebelo , Moduladores del Transporte de Membrana , Canales de Potasio Calcio-Activados , Células de Purkinje , Pirimidinas , Ataxias Espinocerebelosas , Animales , Femenino , Masculino , Ratones , Cerebelo/efectos de los fármacos , Modelos Animales de Enfermedad , Activación del Canal Iónico , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/farmacología , Canales de Potasio Calcio-Activados/agonistas , Canales de Potasio Calcio-Activados/metabolismo , Células de Purkinje/efectos de los fármacos , Pirimidinas/química , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología , Relación Estructura-Actividad
14.
Cell Calcium ; 93: 102319, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248384

RESUMEN

Cerebellar Purkinje cells (PCs) fire spontaneously in a tonic mode, although the precision of this pacemaking activity is disturbed in many abnormal conditions involving cerebellar atrophy, such as many spinocerebellar ataxias (SCAs). In our previous studies we used the single-unit extracellular recording method to analyze spontaneous PC firing in vivo in the anesthetized SCA2-58Q transgenic mice. We realized that PCs from aging SCA2-58Q mice fire much less regularly compared to PCs from their wild type (WT) littermates and this abnormal activity can be reversed with an intraperitoneal (i. p.) injection of SK channel-positive modulator chlorzoxazone (CHZ). Here we used the same single-unit extracellular recording method to analyze the spontaneous firing in vivo in awake SCA2-58Q transgenic mice. For this purpose, we used the Mobile HomeCage (Neurotar, Finland) floating platform to immobilize the experimental animal's head during the recording sessions. We discovered that generally PCs from awake animals fired much more frequently and much less regularly than previously observed PCs from anesthetized animals. In vivo recordings from awake SCA2/WT mice revealed that complex spikes, which are generated by PCs in reply to the excitation coming by climbing fibers, as well as simple spikes, were much less frequent in SCA2 mice compared to their WT littermates. To test the effect of the SK channel positive modulation on the PCs firing activity in awake SCA2 mice and also the effect on their motor coordination, we started the CHZ trial in these mice. We discovered that the long-term i. p. injections of CHZ did not affect the spike generation in SCA2-58Q mice, however, they did recover the precision of this spontaneous pacemaking activity. Furthermore, we also showed that treatment with CHZ alleviated the age-dependent motor impairment in SCA2-58Q mice. We propose that the lack of precision in PC spike generation might be a key cause for the progression of ataxic symptoms in different SCAs and that the activation of calcium-activated potassium channels, including SK channels, can be used as a potential way to treat SCAs on the physiological level of the disease.


Asunto(s)
Potenciales de Acción/fisiología , Cerebelo/fisiopatología , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/fisiopatología , Vigilia/fisiología , Potenciales de Acción/efectos de los fármacos , Envejecimiento/patología , Animales , Clorzoxazona/administración & dosificación , Clorzoxazona/farmacología , Modelos Animales de Enfermedad , Inyecciones Intraperitoneales , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Células de Purkinje/efectos de los fármacos
15.
Front Neurosci ; 14: 279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32317916

RESUMEN

Huntington's disease (HD) is a hereditary neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein, Striatum atrophy in HD leads to a progressive disturbance of psychiatric, motor, and cognitive function. Recent studies of HD patients revealed that the degeneration of cerebellum is also observed independently from the striatal atrophy during early HD stage and may contribute to the motor impairment and ataxia observed in HD. Cerebellar Purkinje cells (PCs) are responsible for the proper cerebellar pathways functioning and motor control. Recent studies on mouse models of HD have shown that the abnormality of the biochemical functions of PCs are observed in HD, suggesting the contribution of PC dysfunction and death to the impaired movement coordination observed in HD. To investigate ataxic symptoms in HD we performed a series of experiments with the yeast artificial chromosome transgenic mouse model of HD (YAC128). Using extracellular single-unit recording method we found that the portion of the cerebellar PCs with bursting and irregular patterns of spontaneous activity drastically rises in aged YAC128 HD mice when compared with wild type littermates. Previous studies demonstrated that SK channels are responsible for the cerebellar PC pacemaker activity and that positive modulation of SK channel activity exerted beneficial effects in different ataxic mouse models. Here we studied effects of the SK channels modulator chlorzoxazone (CHZ) on the motor behavior of YAC128 HD mice and also on the electrophysiological activity and neuroanatomy of the cerebellar PCs from these mice. We determined that the long-term intraperitoneal injections of CHZ alleviated the progressive impairment in the firing pattern of YAC128 PCs. We also demonstrated that treatment with CHZ rescued age-dependent motor incoordination and improved the cerebellar morphology in YAC128 mice. We propose that abnormal changes in the PC firing patterns might be a one of the possible causes of ataxic symptoms in HD and in other polyglutamine disorders and that the pharmacological activation of SK channels may serve as a potential way to improve the activity of cerebellar PCs and relieve the ataxic phenotype in HD patients.

16.
Neurotherapeutics ; 16(4): 1050-1073, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31435879

RESUMEN

The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.


Asunto(s)
Ataxina-2/genética , Péptidos/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Animales , Ataxina-2/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Terapia Genética/métodos , Terapia Genética/tendencias , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/trasplante , Mutación/fisiología , Red Nerviosa/metabolismo , Red Nerviosa/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Estrés Oxidativo/fisiología , Péptidos/metabolismo , Ataxias Espinocerebelosas/metabolismo , Trasplante de Células Madre
17.
FEBS J ; 285(19): 3547-3565, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29253316

RESUMEN

The inositol 1,4,5-trisphosphate receptor (IP3 R) is an intracellular ion channel that mediates the release of calcium ions from the endoplasmic reticulum. It plays a role in basic biological functions, such as cell division, differentiation, fertilization and cell death, and is involved in developmental processes including learning, memory and behavior. Deregulation of neuronal calcium signaling results in disturbance of cell homeostasis, synaptic loss and dysfunction, eventually leading to cell death. Three IP3 R subtypes have been identified in mammalian cells and the predominant isoform in neurons is IP3 R type 1. Dysfunction of IP3 R type 1 may play a role in the pathogenesis of certain neurodegenerative diseases as enhanced activity of the IP3 R was observed in models of Huntington's disease, spinocerebellar ataxias and Alzheimer's disease. These results suggest that IP3 R-mediated signaling is a potential target for treatment of these disorders. In this review we discuss the structure, functions and regulation of the IP3 R in healthy neurons and in conditions of neurodegeneration.


Asunto(s)
Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo
18.
J Huntingtons Dis ; 3(4): 343-350, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25575955

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine expansion in the Huntingtin protein which results in the selective degeneration of striatal medium spiny neurons (MSN). A number of genetic mouse models have been developed to model HD phenotype. Most of these models display impaired performance in motor coordination assays and variety of neuropathological abnormalities. Quantitative neuropathological assessment in these mice requires application of stereological techniques and very labor-intensive and time consuming. Here, we report a development of a novel paradigm that simplifies and accelerates quantitative evaluation of striatal atrophy in HD mice. To achieve this goal, we crossed YAC128 HD transgenic mice with Rgs9-EGFP mice. In Rgs9-EGFP mice the EGFP transgene is expressed selectively in MSN neurons at high levels. Using high resolution fluorescence laser scanning imager, we have been able to precisely measure striatal area and intensity of EGFP expression in coronal slices from these mice at 2 months, 4 months and 9 months of age. Using this approach, we demonstrated significant reduction in striatal volume in YAC128 mice at 4 months and 9 months of age when compared to wild type littermates. We evaluated behavior performance of these mice at 2 months, 4 months and 6 months of age and demonstrated significant impairment of YAC128 mice in beam walk assay at 4 months and 6 months of age. This new mouse model and the quantitative neuropathological scoring paradigm may simplify and accelerate discovery of novel neuroprotective agents for HD.


Asunto(s)
Cuerpo Estriado/patología , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Automatización , Peso Corporal/fisiología , Cuerpo Estriado/química , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento , Ratones , Ratones Transgénicos , Microscopía Confocal , Actividad Motora/fisiología , Análisis y Desempeño de Tareas
19.
Chem Biol ; 19(10): 1340-53, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23102227

RESUMEN

Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disorder caused by a polyglutamine expansion within the Ataxin-2 (Atxn2) protein. Purkinje cells (PC) of the cerebellum fire irregularly and eventually die in SCA2. We show here that the type 2 small conductance calcium-activated potassium channel (SK2) play a key role in control of normal PC activity. Using cerebellar slices from transgenic SCA2 mice we demonstrate that SK channel modulators restore regular pacemaker activity of SCA2 PCs. Furthermore, we also show that oral delivery of a more selective positive modulator of SK2/3 channels (NS13001) alleviates behavioral and neuropathological phenotypes of aging SCA2 transgenic mice. We conclude that SK2 channels constitute a therapeutic target for SCA2 treatment and that the developed selective SK2/3 modulator NS13001 holds promise as a potential therapeutic agent for treatment of SCA2 and possibly other cerebellar ataxias.


Asunto(s)
Adenina/análogos & derivados , Células de Purkinje/efectos de los fármacos , Pirazoles/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Adenina/química , Adenina/farmacología , Adenina/uso terapéutico , Animales , Calcio/metabolismo , Cerebelo/citología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Técnicas de Placa-Clamp , Células de Purkinje/fisiología , Pirazoles/química , Pirazoles/uso terapéutico , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA