RESUMEN
Phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an essential role in neuronal activities through interaction with various proteins involved in signaling at membranes. However, the distribution pattern of PI(4,5)P2 and the association with these proteins on the neuronal cell membranes remain elusive. In this study, we established a method for visualizing PI(4,5)P2 by SDS-digested freeze-fracture replica labeling (SDS-FRL) to investigate the quantitative nanoscale distribution of PI(4,5)P2 in cryo-fixed brain. We demonstrate that PI(4,5)P2 forms tiny clusters with a mean size of â¼1000 nm2 rather than randomly distributed in cerebellar neuronal membranes in male C57BL/6J mice. These clusters show preferential accumulation in specific membrane compartments of different cell types, in particular, in Purkinje cell (PC) spines and granule cell (GC) presynaptic active zones. Furthermore, we revealed extensive association of PI(4,5)P2 with CaV2.1 and GIRK3 across different membrane compartments, whereas its association with mGluR1α was compartment specific. These results suggest that our SDS-FRL method provides valuable insights into the physiological functions of PI(4,5)P2 in neurons.SIGNIFICANCE STATEMENT In this study, we established an electron microscopic method to visualize and analyze the quantitative distribution pattern of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) on cell membranes using cryo-fixed brain tissues and SDS-digested freeze-fracture replica labeling. PI(4,5)P2 interacts with various ion channels and receptors to regulate membrane signaling but its nanoscale distribution and association with these proteins remain elusive. This method revealed PI(4,5)P2 clusters preferentially accumulated in specific membrane compartments and its distinct associations with CaV2.1, GIRK3, and mGluR1α in the mouse cerebellum. These results demonstrate usefulness of the method for gaining insights into the physiological functions of PI(4,5)P2.
Asunto(s)
Neuronas , Fosfatidilinositoles , Ratones , Masculino , Animales , Fosfatidilinositoles/metabolismo , Ratones Endogámicos C57BL , Membrana Celular/metabolismo , Neuronas/metabolismo , Células de Purkinje/metabolismo , Proteínas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismoRESUMEN
Cytoskeletal filaments such as microtubules (MTs) and filamentous actin (F-actin) dynamically support cell structure and functions. In central presynaptic terminals, F-actin is expressed along the release edge and reportedly plays diverse functional roles, but whether axonal MTs extend deep into terminals and play any physiological role remains controversial. At the calyx of Held in rats of either sex, confocal and high-resolution microscopy revealed that MTs enter deep into presynaptic terminal swellings and partially colocalize with a subset of synaptic vesicles (SVs). Electrophysiological analysis demonstrated that depolymerization of MTs specifically prolonged the slow-recovery time component of EPSCs from short-term depression induced by a train of high-frequency stimulation, whereas depolymerization of F-actin specifically prolonged the fast-recovery component. In simultaneous presynaptic and postsynaptic action potential recordings, depolymerization of MTs or F-actin significantly impaired the fidelity of high-frequency neurotransmission. We conclude that MTs and F-actin differentially contribute to slow and fast SV replenishment, thereby maintaining high-frequency neurotransmission.SIGNIFICANCE STATEMENT The presence and functional role of MTs in the presynaptic terminal are controversial. Here, we demonstrate that MTs are present near SVs in calyceal presynaptic terminals and that MT depolymerization specifically prolongs the slow-recovery component of EPSCs from short-term depression. In contrast, F-actin depolymerization specifically prolongs fast-recovery component. Depolymerization of MT or F-actin has no direct effect on SV exocytosis/endocytosis or basal transmission, but significantly impairs the fidelity of high-frequency transmission, suggesting that presynaptic cytoskeletal filaments play essential roles in SV replenishment for the maintenance of high-frequency neurotransmission.
Asunto(s)
Citoesqueleto de Actina/fisiología , Exocitosis/fisiología , Microtúbulos/fisiología , Transmisión Sináptica/fisiología , Vesículas Sinápticas/fisiología , Actinas/fisiología , Animales , Vías Auditivas/fisiología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Terminales Presinápticos/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/efectos de los fármacos , Tiazolidinas/farmacología , Cuerpo Trapezoide/fisiología , Vinblastina/farmacologíaRESUMEN
Volatile anesthetics are widely used for surgery, but neuronal mechanisms of anesthesia remain unidentified. At the calyx of Held in brainstem slices from rats of either sex, isoflurane at clinical doses attenuated EPSCs by decreasing the release probability and the number of readily releasable vesicles. In presynaptic recordings of Ca2+ currents and exocytic capacitance changes, isoflurane attenuated exocytosis by inhibiting Ca2+ currents evoked by a short presynaptic depolarization, whereas it inhibited exocytosis evoked by a prolonged depolarization via directly blocking exocytic machinery downstream of Ca2+ influx. Since the length of presynaptic depolarization can simulate the frequency of synaptic inputs, isoflurane anesthesia is likely mediated by distinct dual mechanisms, depending on input frequencies. In simultaneous presynaptic and postsynaptic action potential recordings, isoflurane impaired the fidelity of repetitive spike transmission, more strongly at higher frequencies. Furthermore, in the cerebrum of adult mice, isoflurane inhibited monosynaptic corticocortical spike transmission, preferentially at a higher frequency. We conclude that dual presynaptic mechanisms operate for the anesthetic action of isoflurane, of which direct inhibition of exocytic machinery plays a low-pass filtering role in spike transmission at central excitatory synapses.SIGNIFICANCE STATEMENT Synaptic mechanisms of general anesthesia remain unidentified. In rat brainstem slices, isoflurane inhibits excitatory transmitter release by blocking presynaptic Ca2+ channels and exocytic machinery, with the latter mechanism predominating in its inhibitory effect on high-frequency transmission. Both in slice and in vivo, isoflurane preferentially inhibits spike transmission induced by high-frequency presynaptic inputs. This low-pass filtering action of isoflurane likely plays a significant role in general anesthesia.
Asunto(s)
Anestésicos por Inhalación/administración & dosificación , Tronco Encefálico/efectos de los fármacos , Isoflurano/administración & dosificación , Neuronas/efectos de los fármacos , Terminales Presinápticos/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Exocitosis/efectos de los fármacos , Femenino , Masculino , Ratones , Técnicas de Placa-Clamp , Ratas , Ratas WistarRESUMEN
α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopathies including Parkinson's disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, whereas the A30P mutant had no effect throughout. The endocytic impairment by WT α-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a photoswitcheable inhibitor of MT polymerization, in a light-wavelength-dependent manner. In contrast, endocytic inhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WT α-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission.SIGNIFICANCE STATEMENT Abnormal α-synuclein abundance is associated with synucleinopathies including Parkinson's disease, but neither the primary target of α-synuclein toxicity nor its mechanism is identified. Here, we loaded monomeric α-synuclein directly into mammalian glutamatergic nerve terminals and found that it primarily inhibits vesicle endocytosis and subsequently impairs exocytosis and neurotransmission fidelity during prolonged high-frequency stimulation. Such α-synuclein toxicity could be rescued by blocking microtubule polymerization, suggesting that microtubule overassembly underlies the toxicity of acutely elevated α-synuclein in the nerve terminal.
Asunto(s)
Vías Auditivas/efectos de los fármacos , Vías Auditivas/metabolismo , Endocitosis/efectos de los fármacos , Sinapsis/efectos de los fármacos , Tubulina (Proteína)/metabolismo , alfa-Sinucleína/toxicidad , Animales , Exocitosis/efectos de los fármacos , Exocitosis/genética , Femenino , Humanos , Masculino , Mutación/genética , Nocodazol/farmacología , Polimerizacion , Ratas , Ratas Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidad , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/genética , alfa-Sinucleína/genéticaRESUMEN
Giant presynaptic terminal brain slice preparations have allowed intracellular recording of electrical signals and molecular loading, elucidating cellular and molecular mechanisms underlying neurotransmission and modulation. However, molecular genetic manipulation or optical imaging in these preparations is hampered by factors, such as tissue longevity and background fluorescence. To overcome these difficulties, we developed a giant presynaptic terminal culture preparation, which allows genetic manipulation and enables optical measurements of synaptic vesicle dynamics, simultaneously with presynaptic electrical signal recordings. This giant synapse reconstructed from dissociated mouse brainstem neurons resembles the development of native calyceal giant synapses in several respects. Thus, this novel preparation constitutes a powerful tool for studying molecular mechanisms of neurotransmission, neuromodulation, and neuronal development. SIGNIFICANCE STATEMENT: We have developed a novel culture preparation of giant mammalian synapses. These presynaptic terminals make it possible to perform optical imaging simultaneously with presynaptic electrophysiological recording. We demonstrate that this enables one to dissect endocytic and acidification times of synaptic vesicles. In addition, developmental elimination and functional maturation in this cultured preparation provide a useful model for studying presynaptic development. Because this giant synapse preparation allows molecular genetic manipulations, it constitutes a powerful new tool for studying molecular mechanisms of neurotransmission, neuromodulation, and neuronal development.
Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/citología , Técnicas de Cultivo de Célula/métodos , Microscopía/métodos , Sinapsis/fisiología , Sinapsis/ultraestructura , Animales , Animales Recién Nacidos , Encéfalo/fisiología , Células Cultivadas , Ratones , Imagen Molecular/métodosRESUMEN
KEY POINTS: It is controversial whether glutamate can leak out of vesicles in the nerve terminal. To address this issue, we abolished vesicular glutamate uptake by washing out presynaptic cytosolic glutamate or by blocking vacuolar ATPase activity using bafilomycin A1. In the absence of vesicular glutamate uptake, both spontaneous and nerve-evoked EPSCs underwent a rundown, suggesting that vesicular glutamate can leak out of vesicles. However, the rundown of evoked EPSCs was caused mainly by accumulation of unfilled vesicles after exocytic release of glutamate, suggesting a minor influence of glutamate leakage on synaptic transmission. ABSTRACT: Glutamate leaks out of synaptic vesicles when the transvesicular proton gradient is dissipated in isolated vesicle preparations. In the nerve terminal, however, it is controversial whether glutamate can leak out of vesicles. To address this issue, we abolished vesicular glutamate uptake by washing out presynaptic cytosolic glutamate in whole-cell dialysis or by blocking vacuolar ATPase using bafilomycin A1 (Baf) at the calyx of Held in mouse brainstem slices. Presynaptic glutamate washout or Baf application reduced the mean amplitude and frequency of spontaneous miniature (m)EPSCs and the mean amplitude of EPSCs evoked every 10 min. The percentage reduction of mEPSC amplitude was much less than that of EPSC amplitude or mEPSC frequency, and tended to reach a plateau. The mean amplitude of mEPSCs after glutamate washout or Baf application remained high above the detection limit, deduced from the reduction of mEPSC amplitude by the AMPA receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione. Membrane capacitance measurements from presynaptic terminals indicated no effect of glutamate washout on exocytosis or endocytosis of synaptic vesicles. We conclude that glutamate can leak out of vesicles unless it is continuously taken up from presynaptic cytosol. However, the magnitude of glutamate leakage was small and had only a minor effect on synaptic responses. In contrast, prominent rundowns of EPSC amplitude and mEPSC frequency observed after glutamate washout or Baf application are likely to be caused by accumulation of unfilled vesicles in presynaptic terminals retrieved after spontaneous and evoked glutamate release.
Asunto(s)
Endocitosis , Potenciales Postsinápticos Excitadores , Ácido Glutámico/metabolismo , Potenciales Postsinápticos Miniatura , Vesículas Sinápticas/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiología , Ratones , Ratones Endogámicos C57BL , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismoRESUMEN
Each taste bud cell (TBC) type responds to a different taste. Previously, we showed that an unidentified cell type(s) functionally expresses a muscarinic acetylcholine (ACh) receptor subtype, M3, and we suggested the ACh-dependent modification of its taste responsiveness. In this study, we found that M3 is expressed by type III TBCs, which is the only cell type that possesses synaptic contacts with taste nerve fibers in taste buds. The application of ACh to the basolateral membrane of mouse fungiform TBCs in situ increased the intracellular Ca2+ concentration in 2.4 ± 1.4 cells per taste bud (mean ± SD, n = 14). After Ca2+ imaging, we supravitally labeled type II cells (phospholipase C ß2 [PLCß2]-immunoreactive cells) with Lucifer yellow CH (LY), a fluorescent dye and investigated the positional relationship between ACh-responding cells and LY-labeled cells. After fixation, the TBCs were immunohistostained to investigate the positional relationships between immunohistochemically classified cells and LY-labeled cells. The overlay of the two positional relationships obtained by superimposing the LY-labeled cells showed that all of the ACh-responding cells were type III cells (synaptosomal-associated protein 25 [SNAP-25]-immunoreactive cells). The ACh responses required no added Ca2+ in the bathing solution. The addition of 1 µM U73122, a phospholipase C inhibitor, decreased the magnitude of the ACh response, whereas that of 1 µM U73343, a negative control, had no effect. These results suggest that type III cells respond to ACh and release Ca2+ from intracellular stores. We also discuss the underlying mechanism of the Ca2+ response and the role of M3 in type III cells.
Asunto(s)
Receptor Muscarínico M3/metabolismo , Papilas Gustativas/metabolismo , Animales , Calcio/metabolismo , Femenino , Masculino , Ratones , Receptor Muscarínico M3/genéticaRESUMEN
Rho-kinase plays diverse roles in cell motility. During neuronal development, Rho-kinase is involved in neuronal migration, and in neurite outgrowth and retraction. Rho-kinase remains highly expressed in mature neurons, but its physiological roles are poorly understood. Here we report that Rho-kinase plays a key role in the synaptic vesicle recycling system in presynaptic terminals. Vesicles consumed by excessive exocytosis are replenished by accelerating vesicle endocytosis via a retrograde feedback mechanism involving nitric oxide released from postsynaptic cells. This homeostatic control system involves presynaptic cyclic GMP-dependent protein kinase (PKG) and a plasma membrane phospholipid, phosphatidylinositol-4,5-bisphophate (PIP2). We found that application of a Rho-kinase inhibitor, a PKG inhibitor or both, reduced the PIP2 content in Wistar rat brainstem synaptosomes to a similar extent. Likewise, application of the Rho-kinase inhibitor into the calyx of Held presynaptic terminal slowed vesicle endocytosis to the same degree as did application of the PKG inhibitor. This endocytic slowing effect of the Rho-kinase inhibitor was canceled by coapplication of PIP2 into the terminal. By contrast, a RhoA activator increased the PIP2 content and reversed the effect of the PKG inhibitor in brainstem synaptosomes. The RhoA activator, when loaded into calyceal terminals, also rescued the endocytic slowing effect of the PKG inhibitor. Furthermore, intraterminal loading of anti-PIP2 antibody slowed vesicle endocytosis and blocked the rescuing effect of the RhoA activator. We conclude that Rho-kinase links presynaptic PKG activity to PIP2 synthesis, thereby controlling the homeostatic balance of vesicle exocytosis and endocytosis in nerve terminals.
Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Endocitosis/fisiología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Vesículas Sinápticas/metabolismo , Quinasas Asociadas a rho/metabolismo , Amidas/farmacología , Animales , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Piridinas/farmacología , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismoRESUMEN
Upon the arrival of action potentials at nerve terminals, neurotransmitters are released from synaptic vesicles (SVs) by exocytosis. Ca V 2.1, 2.2, and 2.3 are the major subunits of the voltage-gated calcium channel (VGCC) responsible for increasing intraterminal calcium levels and triggering SV exocytosis in the central nervous system (CNS) synapses. The two-dimensional analysis of Ca V 2 distributions using sodium dodecyl sulfate (SDS)-digested freeze-fracture replica labeling (SDS-FRL) has revealed their numbers, densities, and nanoscale clustering patterns in individual presynaptic active zones. The variation in these properties affects the coupling of VGCCs with calcium sensors on SVs, synaptic efficacy, and temporal precision of transmission. In this study, we summarize how the morphological parameters of Ca V 2 distribution obtained using SDS-FRL differ depending on the different types of synapses and could correspond to functional properties in synaptic transmission.
RESUMEN
Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer's disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10-20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin 1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.
Asunto(s)
Enfermedad de Alzheimer , Vesículas Sinápticas , Enfermedad de Alzheimer/metabolismo , Animales , Dinamina I/genética , Dinamina I/metabolismo , Dinaminas/metabolismo , Endocitosis , Ratones , Microtúbulos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica , Vesículas Sinápticas/metabolismoRESUMEN
Acute brain slice preparation is a powerful experimental model for investigating the characteristics of synaptic function in the brain. Although brain tissue is usually cut at ice-cold temperature (CT) to facilitate slicing and avoid neuronal damage, exposure to CT causes molecular and architectural changes of synapses. To address these issues, we investigated ultrastructural and electrophysiological features of synapses in mouse acute cerebellar slices prepared at ice-cold and physiological temperature (PT). In the slices prepared at CT, we found significant spine loss and reconstruction, synaptic vesicle rearrangement and decrease in synaptic proteins, all of which were not detected in slices prepared at PT. Consistent with these structural findings, slices prepared at PT showed higher release probability. Furthermore, preparation at PT allows electrophysiological recording immediately after slicing resulting in higher detectability of long-term depression (LTD) after motor learning compared with that at CT. These results indicate substantial advantages of the slice preparation at PT for investigating synaptic functions in different physiological conditions.
RESUMEN
At central glutamatergic synapses, neurotransmitter often saturates postsynaptic AMPA receptors (AMPARs), thereby restricting the dynamic range of synaptic efficacy. Here, using simultaneous pre- and postsynaptic whole-cell recordings, at the calyx of Held synapse of immature rats, we have investigated the mechanism by which transmitter glutamate saturates postsynaptic AMPARs. When we loaded L-glutamate (1-100 mM) into presynaptic terminals, the quantal EPSC (qEPSC) amplitude changed in a concentration-dependent manner. At physiological temperature (36-37 degrees C), the qEPSC amplitude increased when intraterminal L-glutamate concentration was elevated from 1 mM to 10 mM, but it reached a plateau at 10 mM. This plateau persisted after bath-application of the low affinity AMPAR antagonist kynurenate, suggesting that it was caused by saturation of vesicular filling with glutamate rather than by saturation of postsynaptic AMPARs. In contrast to qEPSCs, action potential-evoked EPSCs remained unchanged by increasing intraterminal L-glutamate from 1 mM to 100 mM , even at room temperature, indicating that multi-quantal glutamate saturated postsynaptic AMPARs. This saturation could be relieved by blocking AMPAR desensitization using cyclothiazide (100 microM). The concentration of ambient glutamate in the slice, estimated from NMDA receptor current fluctuations, was 55 nM; this was far below the concentration required for AMPAR desensitization. We conclude that rapid AMPAR desensitization, caused by glutamate released from multiple vesicles during synaptic transmission, underlies postsynaptic AMPAR saturation at this immature calyceal synapse before the onset of hearing.
Asunto(s)
Tronco Encefálico/fisiología , Ácido Glutámico/metabolismo , Receptores AMPA/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Potenciales de Acción/fisiología , Animales , Ácido Aspártico/farmacología , Benzotiadiazinas/farmacología , Tronco Encefálico/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/farmacología , Ácido Quinurénico/farmacología , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Quinoxalinas/farmacología , Ratas , Ratas Wistar , Receptores AMPA/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Temperatura , Tetrodotoxina/farmacologíaRESUMEN
Primary neuronal cell culture preparations are widely used to investigate synaptic functions. This chapter describes a detailed protocol for the preparation of a neuronal cell culture in which giant calyx-type synaptic terminals are formed. This chapter also presents detailed protocols for utilizing the main technical advantages provided by such a preparation, namely, labeling and imaging of synaptic organelles and electrophysiological recordings directly from presynaptic terminals.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neuronas/citología , Sinapsis/ultraestructura , Animales , Células Cultivadas , Fenómenos Electrofisiológicos , Ratones , Imagen Molecular , Sinapsis/fisiologíaRESUMEN
At presynaptic terminals vesicular membranes are fused into plasma membrane upon exocytosis and retrieved by endocytosis. During a sustained high-frequency transmission, exoendocytic coupling is critical for the maintenance of synaptic transmission. Here, we show that this homeostatic coupling is supported by cGMP-dependent protein kinase (PKG) at the calyx of Held. This mechanism starts to operate after hearing onset during the second postnatal week, when PKG expression becomes upregulated in the brainstem. Pharmacological tests with capacitance measurements revealed that presynaptic PKG activity is supported by a retrograde signal cascade mediated by NO that is released by activation of postsynaptic NMDA receptors. Activation of PKG also upregulates phosphatidylinositol-4,5-bisphosphate, thereby accelerating endocytosis. Furthermore, presynaptic PKG activity upregulates synaptic fidelity during high-frequency transmission. We conclude that maturation of the PKG-dependent retrograde signal cascade strengthens the homeostatic plasticity for the maintenance of high-frequency synaptic transmission at the fast glutamatergic synapse.
Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Endocitosis/fisiología , Neuronas/citología , Sinapsis/fisiología , Vesículas Sinápticas/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Tronco Encefálico/citología , Carbazoles/farmacología , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Óxidos N-Cíclicos/farmacología , Relación Dosis-Respuesta a Droga , Capacidad Eléctrica , Estimulación Eléctrica , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Exocitosis/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Imidazoles/farmacología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Monoéster Fosfórico Hidrolasas/metabolismo , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos , Transmisión Sináptica/fisiología , Vesículas Sinápticas/efectos de los fármacos , Sinaptofisina/metabolismo , Tionucleótidos/farmacologíaRESUMEN
Ca(2+) is thought to be essential for the exocytosis and endocytosis of synaptic vesicles. However, the manner in which Ca(2+) coordinates these processes remains unclear, particularly at mature synapses. Using membrane capacitance measurements from calyx of Held nerve terminals in rats, we found that vesicle endocytosis is initiated primarily in Ca(2+) nanodomains around Ca(2+) channels, where exocytosis is triggered. Bulk Ca(2+) outside of the domain could also be involved in endocytosis at immature synapses, although only after extensive exocytosis at more mature synapses. This bulk Ca(2+)-dependent endocytosis required calmodulin and calcineurin activation at immature synapses, but not at more mature synapses. Similarly, GTP-independent endocytosis, which occurred after extensive exocytosis at immature synapses, became negligible after maturation. We propose that nanodomain Ca(2+) simultaneously triggers exocytosis and endocytosis of synaptic vesicles and that the molecular mechanisms underlying Ca(2+)-dependent endocytosis undergo major developmental changes at this fast central synapse.
Asunto(s)
Vías Auditivas/metabolismo , Calcio/metabolismo , Endocitosis/fisiología , Microdominios de Membrana/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Vías Auditivas/citología , Vías Auditivas/crecimiento & desarrollo , Tronco Encefálico/citología , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Calcineurina/metabolismo , Calmodulina/metabolismo , Capacidad Eléctrica , Exocitosis/fisiología , Técnicas In Vitro , Neurogénesis/fisiología , Ratas , Ratas Wistar , Transducción de Señal/fisiología , Factores de TiempoRESUMEN
Taste bud cells (TBCs) express various neurotransmitter receptors assumed to facilitate or modify taste information processing within taste buds. We investigated the functional expression of muscarinic acetylcholine receptor (mAChR) subtypes, M1-M5, in mouse fungiform TBCs. ACh applied to the basolateral membrane of TBCs elevates the intracellular Ca(2+) level in a concentration-dependent manner with the 50% effective concentration (EC(50)) of 0.6 microM. The Ca(2+) responses occur in the absence of extracellular Ca(2+) and are inhibited by atropine, a selective antagonist against mAChRs. The order of 50% inhibitory concentration (IC(50)) examined with a series of antagonists selective to mAChR subtypes shows the expression of M3 on TBCs. Perforated whole-cell voltage clamp studies show that 1 microM ACh blocks an outwardly rectifying current and that 100 nM atropine reverses the block. Reverse transcriptase-mediated polymerase chain reaction studies suggest the expression of M3 but not the other mAChR subtypes. Immunohistochemical studies show that phospholipase Cbeta-immunoreactive TBCs and synaptosome-associated protein of 25 kDa-immunoreactive nerve endings are immunoreactive to a transporter that packs ACh molecules into synaptic vesicles (vesicular acetylcholine transporter). These results show that M3 occurs on a few fungiform TBCs and suggest that a few nerve endings, and probably a few TBCs, release ACh by exocytosis. The role of ACh in taste responses is discussed.