Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cell ; 165(5): 1043-1048, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203106

RESUMEN

The conversion of basic biology into new therapeutics requires scientific activities in both academia and industry. Successful drug discovery projects span disciplines, sectors, and institutions and tightly couple laboratory and clinical experiments. Here, Ehlers describes conceptions and misconceptions about how science is conducted in industry versus academia.


Asunto(s)
Investigación Biomédica , Descubrimiento de Drogas , Industria Farmacéutica/métodos , Aprobación de Drogas , Industria Farmacéutica/organización & administración , Preparaciones Farmacéuticas/economía
2.
Cell ; 148(1-2): 309-21, 2012 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265418

RESUMEN

Following synthesis, integral membrane proteins dwell in the endoplasmic reticulum (ER) for variable periods that are typically rate limiting for plasma membrane delivery. In neurons, the ER extends for hundreds of microns as an anastomosing network throughout highly branched dendrites. However, little is known about the mobility, spatial scales, or dynamic regulation of cargo in the dendritic ER. Here, we show that membrane proteins, including AMPA-type glutamate receptors, rapidly diffuse within the continuous network of dendritic ER but are confined by increased ER complexity at dendritic branch points and near dendritic spines. The spatial range of receptor mobility is rapidly restricted by type I mGluR signaling through a mechanism involving protein kinase C (PKC) and the ER protein CLIMP63. Moreover, local zones of ER complexity compartmentalize ER export and correspond to sites of new dendritic branches. Thus, local control of ER complexity spatially scales secretory trafficking within elaborate dendritic arbors.


Asunto(s)
Dendritas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Embrión de Mamíferos/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Datos de Secuencia Molecular , Proteína Quinasa C/metabolismo , Ratas , Receptores AMPA/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Sinapsis/metabolismo
3.
Cell ; 142(1): 144-57, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603020

RESUMEN

In the mammalian brain, the specification of a single axon and multiple dendrites occurs early in the differentiation of most neuron types. Numerous intracellular signaling events for axon specification have been described in detail. However, the identity of the extracellular factor(s) that initiate neuronal polarity in vivo is unknown. Here, we report that transforming growth factor beta (TGF-beta) initiates signaling pathways both in vivo and in vitro to fate naive neurites into axons. Neocortical neurons lacking the type II TGF-beta receptor (TbetaR2) fail to initiate axons during development. Exogenous TGF-beta is sufficient to direct the rapid growth and differentiation of an axon, and genetic enhancement of receptor activity promotes the formation of multiple axons. Finally, we show that the bulk of these TGF-beta-dependent events are mediated by site-specific phosphorylation of Par6. These results define an extrinsic cue for neuronal polarity in vivo that patterns neural circuits in the developing brain.


Asunto(s)
Axones/metabolismo , Neocórtex/citología , Neocórtex/embriología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Ratones , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
4.
Cell ; 141(3): 524-35, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20434989

RESUMEN

Changes in postsynaptic membrane composition underlie many forms of learning-related synaptic plasticity in the brain. At excitatory glutamatergic synapses, fusion of intracellular vesicles at or near the postsynaptic plasma membrane is critical for dendritic spine morphology, retrograde synaptic signaling, and long-term synaptic plasticity. Whereas the molecular machinery for exocytosis in presynaptic terminals has been defined in detail, little is known about the location, kinetics, regulation, or molecules involved in postsynaptic exocytosis. Here, we show that an exocytic domain adjacent to the postsynaptic density (PSD) enables fusion of large, AMPA receptor-containing recycling compartments during elevated synaptic activity. Exocytosis occurs at microdomains enriched in the plasma membrane t-SNARE syntaxin 4 (Stx4), and disruption of Stx4 impairs both spine exocytosis and long-term potentiation (LTP) at hippocampal synapses. Thus, Stx4 defines an exocytic zone that directs membrane fusion for postsynaptic plasticity, revealing a novel specialization for local membrane traffic in dendritic spines.


Asunto(s)
Membrana Celular/metabolismo , Espinas Dendríticas/metabolismo , Proteínas Qa-SNARE/metabolismo , Animales , Células Cultivadas , Endosomas/metabolismo , Exocitosis , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Qa-SNARE/genética , Ratas , Proteínas SNARE/metabolismo
5.
Nature ; 557(7704): 177-182, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29720658

RESUMEN

Loss of dopamine in Parkinson's disease is hypothesized to impede movement by inducing hypo- and hyperactivity in striatal spiny projection neurons (SPNs) of the direct (dSPNs) and indirect (iSPNs) pathways in the basal ganglia, respectively. The opposite imbalance might underlie hyperkinetic abnormalities, such as dyskinesia caused by treatment of Parkinson's disease with the dopamine precursor L-DOPA. Here we monitored thousands of SPNs in behaving mice, before and after dopamine depletion and during L-DOPA-induced dyskinesia. Normally, intermingled clusters of dSPNs and iSPNs coactivated before movement. Dopamine depletion unbalanced SPN activity rates and disrupted the movement-encoding iSPN clusters. Matching their clinical efficacy, L-DOPA or agonism of the D2 dopamine receptor reversed these abnormalities more effectively than agonism of the D1 dopamine receptor. The opposite pathophysiology arose in L-DOPA-induced dyskinesia, during which iSPNs showed hypoactivity and dSPNs showed unclustered hyperactivity. Therefore, both the spatiotemporal profiles and rates of SPN activity appear crucial to striatal function, and next-generation treatments for basal ganglia disorders should target both facets of striatal activity.


Asunto(s)
Dopamina/metabolismo , Discinesias/patología , Discinesias/fisiopatología , Neuronas/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/fisiopatología , Animales , Señalización del Calcio , Dopamina/deficiencia , Discinesias/etiología , Discinesias/metabolismo , Femenino , Levodopa/metabolismo , Levodopa/farmacología , Masculino , Ratones , Modelos Biológicos , Movimiento/efectos de los fármacos , Neostriado/metabolismo , Neostriado/patología , Neostriado/fisiopatología , Trastornos Parkinsonianos/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo
6.
Annu Rev Cell Dev Biol ; 26: 179-210, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20604708

RESUMEN

Neurons are highly specialized cells whose connectivity at synapses subserves rapid information transfer in the brain. Proper information processing, learning, and memory storage in the brain requires continuous remodeling of synaptic networks. Such remodeling includes synapse formation, elimination, synaptic protein turnover, and changes in synaptic transmission. An emergent mechanism for regulating synapse function is posttranslational modification through the ubiquitin pathway at the postsynaptic membrane. Here, we discuss recent findings implicating ubiquitination and protein degradation in postsynaptic function and plasticity. We describe postsynaptic ubiquitination pathways and their role in brain development, neuronal physiology, and brain disorders.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Sinapsis , Ubiquitinación , Animales , Humanos , Proteínas del Tejido Nervioso/metabolismo
7.
Cell ; 135(3): 535-48, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18984164

RESUMEN

Learning-related plasticity at excitatory synapses in the mammalian brain requires the trafficking of AMPA receptors and the growth of dendritic spines. However, the mechanisms that couple plasticity stimuli to the trafficking of postsynaptic cargo are poorly understood. Here we demonstrate that myosin Vb (MyoVb), a Ca2+-sensitive motor, conducts spine trafficking during long-term potentiation (LTP) of synaptic strength. Upon activation of NMDA receptors and corresponding Ca2+ influx, MyoVb associates with recycling endosomes (REs), triggering rapid spine recruitment of endosomes and local exocytosis in spines. Disruption of MyoVb or its interaction with the RE adaptor Rab11-FIP2 abolishes LTP-induced exocytosis from REs and prevents both AMPA receptor insertion and spine growth. Furthermore, induction of tight binding of MyoVb to actin using an acute chemical genetic strategy eradicates LTP in hippocampal slices. Thus, Ca2+-activated MyoVb captures and mobilizes REs for AMPA receptor insertion and spine growth, providing a mechanistic link between the induction and expression of postsynaptic plasticity.


Asunto(s)
Endosomas/metabolismo , Potenciación a Largo Plazo , Miosina Tipo V/metabolismo , Plasticidad Neuronal , Receptores AMPA/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Dendritas/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos , Miosina Tipo V/química , Neuronas/metabolismo , Ratas , Sinapsis/metabolismo , Proteínas de Unión al GTP rab/metabolismo
8.
Semin Cell Dev Biol ; 77: 10-16, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28890418

RESUMEN

The activity-regulated cytoskeleton-associated protein (Arc) is a neuron-expressed activity regulated immediate early gene (IEG) product that is essential for memory consolidation and serves as a direct readout for neural activation during learning. Arc contributes to diverse forms of synaptic plasticity mediated by the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Notably, Arc protein expression abruptly increases and then rapidly decreases following augmented network activity. A large body of work has focused on Arc transcription and translation. Far fewer studies have explored the relevance of Arc protein stability and turnover. Here, we review recent findings on the mechanisms controlling Arc degradation and discuss its contributions to AMPA receptor trafficking and synaptic plasticity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Ubiquitinación/fisiología , Animales , Proteínas del Citoesqueleto/genética , Aprendizaje/fisiología , Memoria/fisiología , Proteínas del Tejido Nervioso/genética , Transporte de Proteínas/fisiología , Sinapsis/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Pharmacol Exp Ther ; 356(2): 410-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26645429

RESUMEN

Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase highly expressed in the brain and enriched in the postsynaptic density of glutamatergic synapses in the mammalian brain. Accumulating genetic evidence and functional data have implicated TNIK as a risk factor for psychiatric disorders. However, the endogenous substrates of TNIK in neurons are unknown. Here, we describe a novel selective small molecule inhibitor of the TNIK kinase family. Using this inhibitor, we report the identification of endogenous neuronal TNIK substrates by immunoprecipitation with a phosphomotif antibody followed by mass spectrometry. Phosphorylation consensus sequences were defined by phosphopeptide sequence analysis. Among the identified substrates were members of the delta-catenin family including p120-catenin, δ-catenin, and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), each of which is linked to psychiatric or neurologic disorders. Using p120-catenin as a representative substrate, we show TNIK-induced p120-catenin phosphorylation in cells requires intact kinase activity and phosphorylation of TNIK at T181 and T187 in the activation loop. Addition of the small molecule TNIK inhibitor or knocking down TNIK by two shRNAs reduced endogenous p120-catenin phosphorylation in cells. Together, using a TNIK inhibitor and phosphomotif antibody, we identify endogenous substrates of TNIK in neurons, define consensus sequences for TNIK, and suggest signaling pathways by which TNIK influences synaptic development and function linked to psychiatric and neurologic disorders.


Asunto(s)
Secuencia de Consenso/fisiología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Femenino , Quinasas del Centro Germinal , Células HEK293 , Humanos , Masculino , Datos de Secuencia Molecular , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación/fisiología , Ratas , Especificidad por Sustrato/fisiología
10.
Nature ; 461(7266): 900-7, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19829369

RESUMEN

Brain function emerges from the morphologies, spatial organization and patterns of connectivity established between diverse sets of neurons. Historically, the notion that neuronal structure predicts function stemmed from classic histological staining and neuronal tracing methods. Recent advances in molecular genetics and imaging technologies have begun to reveal previously unattainable details about patterns of functional circuit connectivity and the subcellular organization of synapses in the living brain. This sophisticated molecular and genetic 'toolbox', coupled with new methods in optical and electron microscopy, provides an expanding array of techniques for probing neural anatomy and function.


Asunto(s)
Biología Molecular/métodos , Vías Nerviosas/fisiología , Neuroanatomía/métodos , Animales , Encéfalo/ultraestructura , Vías Nerviosas/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura
11.
J Neurosci ; 33(9): 3799-814, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447592

RESUMEN

Angelman syndrome (AS) is a severe disorder of postnatal brain development caused by neuron-specific loss of the HECT (homologous to E6AP carboxy terminus) domain E3 ubiquitin ligase Ube3a/E6AP. The cellular role of Ube3a remains enigmatic despite recent descriptions of synaptic and behavioral deficits in AS mouse models. Although neuron-specific imprinting is thought to limit the disease to the brain, Ube3a is expressed ubiquitously, suggesting a broader role in cellular function. In the current study, we demonstrate a profound structural disruption and cisternal swelling of the Golgi apparatus (GA) in the cortex of AS (UBE3A(m-/p+)) mice. In Ube3a knockdown cell lines and UBE3A(m-/p+) cortical neurons, the GA is severely under-acidified, leading to osmotic swelling. Both in vitro and in vivo, the loss of Ube3a and corresponding elevated pH of the GA is associated with a marked reduction in protein sialylation, a process highly dependent on intralumenal Golgi pH. Altered ion homeostasis of the GA may provide a common cellular pathophysiology underlying the diverse plasticity and neurodevelopmental deficits associated with AS.


Asunto(s)
Corteza Cerebral/ultraestructura , Aparato de Golgi/genética , Aparato de Golgi/patología , Ácido N-Acetilneuramínico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Análisis de Varianza , Síndrome de Angelman/genética , Síndrome de Angelman/patología , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Células Cultivadas , Corteza Cerebral/citología , Estructuras Citoplasmáticas/genética , Estructuras Citoplasmáticas/metabolismo , Estructuras Citoplasmáticas/ultraestructura , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Glicina/análogos & derivados , Aparato de Golgi/ultraestructura , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Lectinas/metabolismo , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mutagénesis , Neuronas/metabolismo , Neuronas/ultraestructura , Transporte de Proteínas/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Espermina/análogos & derivados , Transfección , Ubiquitina-Proteína Ligasas/deficiencia , Proteína 2 de Membrana Asociada a Vesículas/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
12.
ACS Chem Neurosci ; 15(12): 2386-2395, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38758589

RESUMEN

Results from randomized clinical trials of psilocybin in depressive disorders highlight the therapeutic potential of serotonergic psychedelic compounds in mental health disorders. The synthetic 5-hydroxytryptamine 2A receptor agonist 4-hydroxy-N,N-diisopropyltryptamine (4-OH-DiPT) is structurally similar to psilocin but is reported to have a shorter duration (2-3 h) of psychedelic effects, suggesting the potential for psilocybin-like therapeutic activity with reduced clinical resource burden. Here, we describe the preclinical and translational characterization of RE104, a 4-OH-DiPT prodrug comprising a glutarate moiety designed to cleave rapidly in situ and thus provide reasonable bioavailability of the active drug. Plasma concentration of 4-HO-DiPT over time in PK experiments in rats was correlated with head-twitch intensity. The half-life of 4-OH-DiPT was 40 min after subcutaneous administration of RE104 in rats. In a forced swim test, a single dose of RE104 (1 mg/kg) significantly reduced mean immobility time at 1 week compared with vehicle (P < 0.001), confirming translational antidepressant potential. Taken together, these data with RE104 show that the glutarate ester can act as an efficient prodrug strategy for 4-HO-DiPT, a unique short-duration psychedelic with potential in depressive disorders.


Asunto(s)
Alucinógenos , Profármacos , Ratas Sprague-Dawley , Animales , Profármacos/farmacología , Profármacos/síntesis química , Alucinógenos/farmacología , Alucinógenos/síntesis química , Masculino , Ratas , Triptaminas/farmacología , Triptaminas/síntesis química , Triptaminas/química , Antidepresivos/farmacología , Antidepresivos/síntesis química
13.
Hum Mol Genet ; 20(15): 3093-108, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21558424

RESUMEN

SHANK3 is a synaptic scaffolding protein enriched in the postsynaptic density (PSD) of excitatory synapses. Small microdeletions and point mutations in SHANK3 have been identified in a small subgroup of individuals with autism spectrum disorder (ASD) and intellectual disability. SHANK3 also plays a key role in the chromosome 22q13.3 microdeletion syndrome (Phelan-McDermid syndrome), which includes ASD and cognitive dysfunction as major clinical features. To evaluate the role of Shank3 in vivo, we disrupted major isoforms of the gene in mice by deleting exons 4-9. Isoform-specific Shank3(e4-9) homozygous mutant mice display abnormal social behaviors, communication patterns, repetitive behaviors and learning and memory. Shank3(e4-9) male mice display more severe impairments than females in motor coordination. Shank3(e4-9) mice have reduced levels of Homer1b/c, GKAP and GluA1 at the PSD, and show attenuated activity-dependent redistribution of GluA1-containing AMPA receptors. Subtle morphological alterations in dendritic spines are also observed. Although synaptic transmission is normal in CA1 hippocampus, long-term potentiation is deficient in Shank3(e4-9) mice. We conclude that loss of major Shank3 species produces biochemical, cellular and morphological changes, leading to behavioral abnormalities in mice that bear similarities to human ASD patients with SHANK3 mutations.


Asunto(s)
Proteínas Portadoras/metabolismo , Isoformas de Proteínas/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Conducta Animal/fisiología , Proteínas Portadoras/genética , Femenino , Proteínas de Andamiaje Homer , Aprendizaje/fisiología , Masculino , Memoria/fisiología , Ratones , Proteínas de Microfilamentos , Actividad Motora/genética , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Isoformas de Proteínas/genética , ARN Mensajero/genética , Proteínas Asociadas a SAP90-PSD95 , Transmisión Sináptica/genética
14.
Nat Methods ; 7(12): 973-5, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21037589

RESUMEN

Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein-interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue-light exposure with subsecond time resolution and subcellular spatial resolution. We demonstrate the utility of this system by inducing protein translocation, transcription and Cre recombinase-mediated DNA recombination using light.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Luz , Animales , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/efectos de la radiación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/efectos de la radiación , Criptocromos/metabolismo , Criptocromos/efectos de la radiación , Cinética , Mamíferos , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/efectos de la radiación , Saccharomyces cerevisiae/genética , Transcripción Genética/efectos de la radiación
15.
Biochem Soc Trans ; 41(6): 1365-82, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24256224

RESUMEN

Among the largest cells in the body, neurons possess an immense surface area and intricate geometry that poses many unique cell biological challenges. This morphological complexity is critical for neural circuit formation and enables neurons to compartmentalize cell-cell communication and local intracellular signalling to a degree that surpasses other cell types. The adaptive plastic properties of neurons, synapses and circuits have been classically studied by measurement of electrophysiological properties, ionic conductances and excitability. Over the last 15 years, the field of synaptic and neural electrophysiology has collided with neuronal cell biology to produce a more integrated understanding of how these remarkable highly differentiated cells utilize common eukaryotic cellular machinery to decode, integrate and propagate signals in the nervous system. The present article gives a very brief and personal overview of the organelles and trafficking machinery of neuronal dendrites and their role in dendritic and synaptic plasticity.


Asunto(s)
Dendritas/fisiología , Plasticidad Neuronal/fisiología , Animales , Fenómenos Electrofisiológicos , Humanos
16.
Neuron ; 55(5): 686-9, 2007 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-17785176

RESUMEN

Dendrites and axons exhibit different morphologies and patterns of growth. This difference in neuronal structure is controlled by evolutionarily conserved directed trafficking through the secretory pathway.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Dendritas/metabolismo , Neurosecreción/fisiología , Transducción de Señal/fisiología , Animales , Aumento de la Célula , Sistema Nervioso Central/metabolismo , Dendritas/ultraestructura , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas/fisiología
17.
Neuron ; 54(3): 447-60, 2007 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-17481397

RESUMEN

Synaptic activity regulates the postsynaptic accumulation of AMPA receptors over timescales ranging from minutes to days. Indeed, the regulated trafficking and mobility of GluR1 AMPA receptors underlies many forms of synaptic potentiation at glutamatergic synapses throughout the brain. However, the basis for synapse-specific accumulation of GluR1 is unknown. Here we report that synaptic activity locally immobilizes GluR1 AMPA receptors at individual synapses. Using single-molecule tracking together with the silencing of individual presynaptic boutons, we demonstrate that local synaptic activity reduces diffusional exchange of GluR1 between synaptic and extraynaptic domains, resulting in postsynaptic accumulation of GluR1. At neighboring inactive synapses, GluR1 is highly mobile with individual receptors frequently escaping the synapse. Within the synapse, spontaneous activity confines the diffusional movement of GluR1 to restricted subregions of the postsynaptic membrane. Thus, local activity restricts GluR1 mobility on a submicron scale, defining an input-specific mechanism for regulating AMPA receptor composition and abundance.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Embrión de Mamíferos , Proteínas Fluorescentes Verdes/biosíntesis , Hipocampo , Péptidos y Proteínas de Señalización Intracelular , Neuronas/citología , Neuronas/fisiología , Técnicas de Placa-Clamp , Transporte de Proteínas/fisiología , Ratas , Factores de Tiempo , Transducción Genética/métodos
18.
Neuron ; 54(2): 205-18, 2007 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-17442243

RESUMEN

Channelrhodopsin-2 (ChR2) is a light-gated, cation-selective ion channel isolated from the green algae Chlamydomonas reinhardtii. Here, we report the generation of transgenic mice that express a ChR2-YFP fusion protein in the CNS for in vivo activation and mapping of neural circuits. Using focal illumination of the cerebral cortex and olfactory bulb, we demonstrate a highly reproducible, light-dependent activation of neurons and precise control of firing frequency in vivo. To test the feasibility of mapping neural circuits, we exploited the circuitry formed between the olfactory bulb and the piriform cortex in anesthetized mice. In the olfactory bulb, individual mitral cells fired action potentials in response to light, and their firing rate was not influenced by costimulated glomeruli. However, in piriform cortex, the activity of target neurons increased as larger areas of the bulb were illuminated to recruit additional glomeruli. These results support a model of olfactory processing that is dependent upon mitral cell convergence and integration onto cortical cells. More broadly, these findings demonstrate a system for precise manipulation of neural activity in the intact mammalian brain with light and illustrate the use of ChR2 mice in exploring functional connectivity of complex neural circuits in vivo.


Asunto(s)
Canales Iónicos/biosíntesis , Canales Iónicos/genética , Vías Nerviosas/metabolismo , Vías Nerviosas/efectos de la radiación , Animales , Recuento de Células , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Electrofisiología , Inmunohistoquímica , Luz , Proteínas Luminiscentes/biosíntesis , Ratones , Ratones Transgénicos , Microscopía Confocal , Vías Nerviosas/citología , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Estimulación Luminosa , Regiones Promotoras Genéticas/genética
19.
Neuron ; 55(6): 874-89, 2007 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-17880892

RESUMEN

Endocytosis of AMPA receptors and other postsynaptic cargo occurs at endocytic zones (EZs), stably positioned sites of clathrin adjacent to the postsynaptic density (PSD). The tight localization of postsynaptic endocytosis is thought to control spine composition and regulate synaptic transmission. However, the mechanisms that situate the EZ near the PSD and the role of spine endocytosis in synaptic transmission are unknown. Here, we report that a physical link between dynamin-3 and the postsynaptic adaptor Homer positions the EZ near the PSD. Disruption of dynamin-3 or its interaction with Homer uncouples the PSD from the EZ, resulting in synapses lacking postsynaptic clathrin. Loss of the EZ leads to a loss of synaptic AMPA receptors and reduced excitatory synaptic transmission that corresponds with impaired synaptic recycling. Thus, a physical link between the PSD and the EZ ensures localized endocytosis and recycling by recapturing and maintaining a proximate pool of cycling AMPA receptors.


Asunto(s)
Proteínas Portadoras/fisiología , Dinamina III/fisiología , Receptores AMPA/fisiología , Vesículas Transportadoras/fisiología , Animales , Proteínas Portadoras/química , Clatrina/fisiología , ADN/genética , Dinamina III/química , Electrofisiología , GTP Fosfohidrolasas/deficiencia , GTP Fosfohidrolasas/genética , Proteínas de Andamiaje Homer , Humanos , Inmunohistoquímica , Metabolismo de los Lípidos/fisiología , Microscopía Confocal , Microscopía Electrónica , Neuronas/fisiología , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Interferencia de ARN/fisiología , Transmisión Sináptica/fisiología , Vesículas Transportadoras/ultraestructura
20.
Nat Methods ; 5(4): 299-302, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18327266

RESUMEN

Here we describe a knock-in mouse model for Cre-loxP-based conditional expression of TRPV1 in central nervous system neurons. Expression of Cre recombinase using biolistics, lentivirus or genetic intercrosses triggered heterologous expression of TRPV1 in a cell-specific manner. Application of the TRPV1 ligand capsaicin induced strong inward currents, triggered action potentials and activated stereotyped behaviors, allowing cell type-specific chemical genetic control of neuronal activity in vitro and in vivo.


Asunto(s)
Conducta Animal , Integrasas , Neuronas , Recombinación Genética , Canales Catiónicos TRPV/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Capsaicina/farmacología , Marcación de Gen , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Inmunohistoquímica , Integrasas/biosíntesis , Lentivirus/genética , Ratones , Ratones Noqueados , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA