Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(11): 5774-5790, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37102635

RESUMEN

In bacteria, release of newly synthesized proteins from ribosomes during translation termination is catalyzed by class-I release factors (RFs) RF1 or RF2, reading UAA and UAG or UAA and UGA codons, respectively. Class-I RFs are recycled from the post-termination ribosome by a class-II RF, the GTPase RF3, which accelerates ribosome intersubunit rotation and class-I RF dissociation. How conformational states of the ribosome are coupled to the binding and dissociation of the RFs remains unclear and the importance of ribosome-catalyzed guanine nucleotide exchange on RF3 for RF3 recycling in vivo has been disputed. Here, we profile these molecular events using a single-molecule fluorescence assay to clarify the timings of RF3 binding and ribosome intersubunit rotation that trigger class-I RF dissociation, GTP hydrolysis, and RF3 dissociation. These findings in conjunction with quantitative modeling of intracellular termination flows reveal rapid ribosome-dependent guanine nucleotide exchange to be crucial for RF3 action in vivo.


Asunto(s)
Bacterias , Terminación de la Cadena Péptídica Traduccional , Factores de Terminación de Péptidos , Bacterias/metabolismo , Guanosina Trifosfato/metabolismo , Factores de Terminación de Péptidos/metabolismo , Unión Proteica
2.
Nucleic Acids Res ; 50(18): 10201-10211, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35882385

RESUMEN

Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.


Continued expansion of the genetic code has required the use of synthetic tRNAs for decoding. Some of these synthetic tRNAs have unique structural features that are not observed in canonical tRNAs. Here, the authors applied single-molecule, biochemical and structural methods to determine whether these distinct features were deleterious for efficient protein translation on the ribosome. With a focus on selenocysteine insertion, the authors explored an allo-tRNA with a 9/3 acceptor domain. They observed a translational roadblock that occurred in A to P site tRNA translocation. This block was mediated by a tertiary interaction across the tRNA core, directing the variable arm position into an unfavorable conformation. A single-nucleotide mutation disrupted this interaction, providing flexibility in the variable arm and promoting efficient protein production.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Aminoácidos/genética , Aminoacil-ARNt Sintetasas/genética , Nucleótidos/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Selenocisteína/química
3.
Nature ; 547(7663): 293-297, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28726822

RESUMEN

Many fine-scale features of ribosomes have been explained in terms of function, revealing a molecular machine that is optimized for error-correction, speed and control. Here we demonstrate mathematically that many less well understood, larger-scale features of ribosomes-such as why a few ribosomal RNA molecules dominate the mass and why the ribosomal protein content is divided into 55-80 small, similarly sized segments-speed up their autocatalytic production.


Asunto(s)
Biocatálisis , Ribosomas/metabolismo , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química
4.
Nucleic Acids Res ; 49(9): 5124-5142, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33885812

RESUMEN

Ribosome profiling spectra bear rich information on translation control and dynamics. Yet, due to technical biases in library generation, extracting quantitative measures of discrete translation events has remained elusive. Using maximum likelihood statistics and data set from Escherichia coli we develop a robust method for neutralizing technical biases (e.g. base specific RNase preferences in ribosome-protected mRNA fragments (RPF) generation), which allows for correct estimation of translation times at single codon resolution. Furthermore, we validated the method with available datasets from E. coli treated with antibiotic to inhibit isoleucyl-tRNA synthetase, and two datasets from Saccharomyces cerevisiae treated with two RNases with distinct cleavage signatures. We demonstrate that our approach accounts for RNase cleavage preferences and provides bias-corrected translation times estimates. Our approach provides a solution to the long-standing problem of extracting reliable information about peptide elongation times from highly noisy and technically biased ribosome profiling spectra.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Ribosomas/metabolismo , Codón , Escherichia coli/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Ribonucleasas , Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN
5.
Nucleic Acids Res ; 49(5): 2684-2699, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561188

RESUMEN

We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.


Asunto(s)
Adenosina/análogos & derivados , Factores de Terminación de Péptidos/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Adenosina/metabolismo , Codón , Codón de Terminación , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Péptidos/metabolismo , Ribosomas/metabolismo
6.
Nucleic Acids Res ; 46(3): 1362-1374, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29267976

RESUMEN

We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of 'monitoring bases' A1492, A1493 and G530 in 16S rRNA in favor of their 'activated' state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the 'intrinsic selectivity' of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Código Genético , Magnesio/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Cationes Bivalentes , Codón , Escherichia coli/genética , Escherichia coli/metabolismo , Gentamicinas/farmacología , Cinética , Neomicina/farmacología , Paromomicina/farmacología , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Fracciones Subcelulares/química , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
7.
Nucleic Acids Res ; 46(11): 5861-5874, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29733411

RESUMEN

The GTPase EF-Tu in ternary complex with GTP and aminoacyl-tRNA (aa-tRNA) promotes rapid and accurate delivery of cognate aa-tRNAs to the ribosomal A site. Here we used cryo-EM to study the molecular origins of the accuracy of ribosome-aided recognition of a cognate ternary complex and the accuracy-amplifying role of the monitoring bases A1492, A1493 and G530 of the 16S rRNA. We used the GTPase-deficient EF-Tu variant H84A with native GTP, rather than non-cleavable GTP analogues, to trap a near-cognate ternary complex in high-resolution ribosomal complexes of varying codon-recognition accuracy. We found that ribosome complexes trapped by GTPase-deficicent ternary complex due to the presence of EF-TuH84A or non-cleavable GTP analogues have very similar structures. We further discuss speed and accuracy of initial aa-tRNA selection in terms of conformational changes of aa-tRNA and stepwise activation of the monitoring bases at the decoding center of the ribosome.


Asunto(s)
Codón , Guanosina Trifosfato/química , Factor Tu de Elongación Peptídica/química , Aminoacil-ARN de Transferencia/química , Ribosomas/química , Microscopía por Crioelectrón , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mutación , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , ARN Mensajero/química , ARN Ribosómico 16S/química
8.
Nucleic Acids Res ; 45(20): 11582-11593, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29036494

RESUMEN

We suggest a novel two-step proofreading mechanism with two sequential rounds of proofreading selection in mRNA transcription. It is based on the previous experimental observations that the proofreading RNA polymerase cleaves off transcript fragments of at least 2 nt and that transcript elongation after a nucleotide misincorporation is anomalously slow. Taking these results into account, we extend the description of the accuracy of template guided nucleotide selection beyond previous models of RNA polymerase-dependent DNA transcription. The model derives the accuracy of initial and proofreading base selection from experimentally estimated nearest-neighbor parameters. It is also used to estimate the small accuracy enhancement of polymerase revisiting of previous positions following transcript cleavage.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , ARN Polimerasa II/metabolismo , Transcripción Genética/genética , Escherichia coli/enzimología , Escherichia coli/metabolismo , Modelos Biológicos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética
9.
Proc Natl Acad Sci U S A ; 113(4): 978-83, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26755601

RESUMEN

Viomycin is a tuberactinomycin antibiotic essential for treating multidrug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of ∼ 45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Factor G de Elongación Peptídica/antagonistas & inhibidores , Biosíntesis de Proteínas/efectos de los fármacos , Viomicina/farmacología , Bacterias/metabolismo , Relación Dosis-Respuesta a Droga , Guanosina Trifosfato/química , Probabilidad , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Viomicina/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(48): 13744-13749, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27837019

RESUMEN

Aminoacyl-tRNAs (aa-tRNAs) are selected by the messenger RNA programmed ribosome in ternary complex with elongation factor Tu (EF-Tu) and GTP and then, again, in a proofreading step after GTP hydrolysis on EF-Tu. We use tRNA mutants with different affinities for EF-Tu to demonstrate that proofreading of aa-tRNAs occurs in two consecutive steps. First, aa-tRNAs in ternary complex with EF-Tu·GDP are selected in a step where the accuracy increases linearly with increasing aa-tRNA affinity to EF-Tu. Then, following dissociation of EF-Tu·GDP from the ribosome, the accuracy is further increased in a second and apparently EF-Tu-independent step. Our findings identify the molecular basis of proofreading in bacteria, highlight the pivotal role of EF-Tu for fast and accurate protein synthesis, and illustrate the importance of multistep substrate selection in intracellular processing of genetic information.


Asunto(s)
Factor Tu de Elongación Peptídica/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Ribosomas/genética , Aminoacil-ARNt Sintetasas/genética , Código Genético/genética , Guanosina Difosfato/metabolismo , Mutación , Conformación de Ácido Nucleico , ARN Mensajero/genética , Factores Complejos Ternarios/genética
11.
RNA ; 22(1): 10-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26527791

RESUMEN

How EF-G and RRF act together to split a post-termination ribosomal complex into its subunits has remained obscure. Here, using stopped-flow experiments with Rayleigh light scattering detection and quench-flow experiments with radio-detection of GTP hydrolysis, we have clarified the kinetic mechanism of ribosome recycling and obtained precise estimates of its kinetic parameters. Ribosome splitting requires that EF-G binds to an already RRF-containing ribosome. EF-G binding to RRF-free ribosomes induces futile rounds of GTP hydrolysis and inhibits ribosome splitting, implying that while RRF is purely an activator of recycling, EF-G acts as both activator and competitive inhibitor of RRF in recycling of the post-termination ribosome. The ribosome splitting rate and the number of GTPs consumed per splitting event depend strongly on the free concentrations of EF-G and RRF. The maximal recycling rate, here estimated as 25 sec(-1), is approached at very high concentrations of EF-G and RRF with RRF in high excess over EF-G. The present in vitro results, suggesting an in vivo ribosome recycling rate of ∼5 sec(-1), are discussed in the perspective of rapidly growing bacterial cells.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Ribosomas/fisiología , Guanosina Trifosfato/metabolismo , Cinética , Ribosomas/metabolismo
12.
RNA ; 22(6): 896-904, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27090284

RESUMEN

The ribosome uses initial and proofreading selection of aminoacyl-tRNAs for accurate protein synthesis. Anomalously high initial misreading in vitro of near-cognate codons by tRNA(His) and tRNA(Glu) suggested potential error hotspots in protein synthesis, but in vivo data suggested their partial neutralization. To clarify the role of proofreading in this error reduction, we varied the Mg(2+) ion concentration to calibrate the total accuracy of our cell-free system to that in the living Escherichia coli cell. We found the total accuracy of tRNA selection in our system to vary by five orders of magnitude depending on tRNA identity, type of mismatch, and mismatched codon position. Proofreading and initial selection were positively correlated at high, but uncorrelated at low initial selection, suggesting hyperactivated proofreading as a means to neutralize potentially disastrous initial selection errors.


Asunto(s)
Código Genético , Biosíntesis de Proteínas , ARN de Transferencia/química , Codón
13.
Nucleic Acids Res ; 44(7): 3264-75, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27001509

RESUMEN

The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.


Asunto(s)
Antibacterianos/farmacología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Ribosómicas/antagonistas & inhibidores , Ribosomas/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Guanosina Trifosfato/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Terminación de la Cadena Péptídica Traduccional/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 112(31): 9602-7, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195797

RESUMEN

We used a cell-free system with pure Escherichia coli components to study initial codon selection of aminoacyl-tRNAs in ternary complex with elongation factor Tu and GTP on messenger RNA-programmed ribosomes. We took advantage of the universal rate-accuracy trade-off for all enzymatic selections to determine how the efficiency of initial codon readings decreased linearly toward zero as the accuracy of discrimination against near-cognate and wobble codon readings increased toward the maximal asymptote, the d value. We report data on the rate-accuracy variation for 7 cognate, 7 wobble, and 56 near-cognate codon readings comprising about 15% of the genetic code. Their d values varied about 400-fold in the 200-80,000 range depending on type of mismatch, mismatch position in the codon, and tRNA isoacceptor type. We identified error hot spots (d = 200) for U:G misreading in second and U:U or G:A misreading in third codon position by His-tRNA(His) and, as also seen in vivo, Glu-tRNA(Glu). We suggest that the proofreading mechanism has evolved to attenuate error hot spots in initial selection such as those found here.


Asunto(s)
Bacterias/metabolismo , Codón/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Secuencia de Bases , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , Datos de Secuencia Molecular , ARN Mensajero/metabolismo
15.
J Biol Chem ; 290(6): 3440-54, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25451927

RESUMEN

The antibiotic fusidic acid (FA) targets elongation factor G (EF-G) and inhibits ribosomal peptide elongation and ribosome recycling, but deeper mechanistic aspects of FA action have remained unknown. Using quench flow and stopped flow experiments in a biochemical system for protein synthesis and taking advantage of separate time scales for inhibited (10 s) and uninhibited (100 ms) elongation cycles, a detailed kinetic model of FA action was obtained. FA targets EF-G at an early stage in the translocation process (I), which proceeds unhindered by the presence of the drug to a later stage (II), where the ribosome stalls. Stalling may also occur at a third stage of translocation (III), just before release of EF-G from the post-translocation ribosome. We show that FA is a strong elongation inhibitor (K50% ≈ 1 µm), discuss the identity of the FA targeted states, and place existing cryo-EM and crystal structures in their functional context.


Asunto(s)
Antibacterianos/farmacología , Ácido Fusídico/farmacología , Factor G de Elongación Peptídica/antagonistas & inhibidores , Inhibidores de la Síntesis de la Proteína/farmacología , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Factor G de Elongación Peptídica/metabolismo , Ribosomas/metabolismo
16.
RNA ; 20(5): 632-43, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24671767

RESUMEN

There is evidence that tRNA bodies have evolved to reduce differences between aminoacyl-tRNAs in their affinity to EF-Tu. Here, we study the kinetics of incorporation of L-amino acids (AAs) Phe, Ala allyl-glycine (aG), methyl-serine (mS), and biotinyl-lysine (bK) using a tRNA(Ala)-based body (tRNA(AlaB)) with a high affinity for EF-Tu. Results are compared with previous data on the kinetics of incorporation of the same AAs using a tRNA(PheB) body with a comparatively low affinity for EF-Tu. All incorporations exhibited fast and slow phases, reflecting the equilibrium fraction of AA-tRNA in active ternary complex with EF-Tu:GTP before the incorporation reaction. Increasing the concentration of EF-Tu increased the amplitude of the fast phase and left its rate unaltered. This allowed estimation of the affinity of each AA-tRNA to EF-Tu:GTP during translation, showing about a 10-fold higher EF-Tu affinity for AA-tRNAs formed from the tRNA(AlaB) body than from the tRNA(PheB) body. At ∼1 µM EF-Tu, tRNA(AlaB) conferred considerably faster incorporation kinetics than tRNA(PheB), especially in the case of the bulky bK. In contrast, the swap to the tRNA(AlaB) body did not increase the fast phase fraction of N-methyl-Phe incorporation, suggesting that the slow incorporation of N-methyl-Phe had a different cause than low EF-Tu:GTP affinity. The total time for AA-tRNA release from EF-Tu:GDP, accommodation, and peptidyl transfer on the ribosome was similar for the tRNA(AlaB) and tRNA(PheB) bodies. We conclude that a tRNA body with high EF-Tu affinity can greatly improve incorporation of unnatural AAs in a potentially generalizable manner.


Asunto(s)
Escherichia coli/genética , Factor Tu de Elongación Peptídica/genética , Aminoacil-ARN de Transferencia/genética , Ribosomas/genética , Aminoácidos/genética , Guanosina Trifosfato/genética , Cinética , Biosíntesis de Proteínas
17.
Mol Cell ; 30(5): 589-98, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18538657

RESUMEN

The speed of protein synthesis determines the growth rate of bacteria. Current biochemical estimates of the rate of protein elongation are small and incompatible with the rate of protein elongation in the living cell. With a cell-free system for protein synthesis, optimized for speed and accuracy, we have estimated the rate of peptidyl transfer from a peptidyl-tRNA in P site to a cognate aminoacyl-tRNA in A site at various temperatures. We have found these rates to be much larger than previously measured and fully compatible with the speed of protein elongation for E. coli cells growing in rich medium. We have found large activation enthalpy and small activation entropy for peptidyl transfer, similar to experimental estimates of these parameters for A site analogs of aminoacyl-tRNA. Our work has opened a useful kinetic window for biochemical studies of protein synthesis, bridging the gap between in vitro and in vivo data on ribosome function.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/metabolismo , Dipéptidos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Cinética , ARN Bacteriano/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Termodinámica , Trometamina
18.
Proc Natl Acad Sci U S A ; 110(51): 20527-32, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297927

RESUMEN

Bacterial populations growing in a changing world must adjust their proteome composition in response to alterations in the environment. Rapid proteome responses to growth medium changes are expected to increase the average growth rate and fitness value of these populations. Little is known about the dynamics of proteome change, e.g., whether bacteria use optimal strategies of gene expression for rapid proteome adjustments and if there are lower bounds to the time of proteome adaptation in response to growth medium changes. To begin answering these types of questions, we modeled growing bacteria as stoichiometrically coupled networks of metabolic pathways. These are balanced during steady-state growth in a constant environment but are initially unbalanced after rapid medium shifts due to a shortage of enzymes required at higher concentrations in the new environment. We identified an optimal strategy for rapid proteome adjustment in the absence of protein degradation and found a lower bound to the time of proteome adaptation after medium shifts. This minimal time is determined by the ratio between the Kullback-Leibler distance from the pre- to the postshift proteome and the postshift steady-state growth rate. The dynamics of optimally controlled proteome adaptation has a simple analytical solution. We used detailed numerical modeling to demonstrate that realistic bacterial control systems can emulate this optimal strategy for rapid proteome adaptation. Our results may provide a conceptual link between the physiology and population genetics of growing bacteria.


Asunto(s)
Adaptación Biológica/fisiología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Modelos Biológicos , Proteoma/metabolismo , Proteómica/métodos
19.
EMBO J ; 30(2): 289-301, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21151095

RESUMEN

We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNA(i)). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNA(i), implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNA(i) and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10(-4) for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases.


Asunto(s)
Modelos Biológicos , Factor 2 Procariótico de Iniciación/genética , Factor 2 Procariótico de Iniciación/metabolismo , Biosíntesis de Proteínas/genética , Subunidades Ribosómicas/metabolismo , Secuencia de Bases , Escherichia coli , Guanosina Trifosfato/metabolismo , Técnicas In Vitro , Datos de Secuencia Molecular , Mutación/genética , ARN de Transferencia de Metionina/metabolismo , Salmonella typhimurium , Análisis de Secuencia de ADN , Especificidad de la Especie
20.
Proc Natl Acad Sci U S A ; 109(1): 131-6, 2012 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-22190491

RESUMEN

Rapid and accurate translation of the genetic code into protein is fundamental to life. Yet due to lack of a suitable assay, little is known about the accuracy-determining parameters and their correlation with translational speed. Here, we develop such an assay, based on Mg(2+) concentration changes, to determine maximal accuracy limits for a complete set of single-mismatch codon-anticodon interactions. We found a simple, linear trade-off between efficiency of cognate codon reading and accuracy of tRNA selection. The maximal accuracy was highest for the second codon position and lowest for the third. The results rationalize the existence of proofreading in code reading and have implications for the understanding of tRNA modifications, as well as of translation error-modulating ribosomal mutations and antibiotics. Finally, the results bridge the gap between in vivo and in vitro translation and allow us to calibrate our test tube conditions to represent the environment inside the living cell.


Asunto(s)
Código Genético/genética , Biosíntesis de Proteínas , ARN de Transferencia/genética , Selección Genética , Secuencia de Bases , Codón/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Guanosina Trifosfato/metabolismo , Hidrólisis/efectos de los fármacos , Cinética , Magnesio/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA