Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neuroeng Rehabil ; 20(1): 37, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004111

RESUMEN

BACKGROUND: Paretic propulsion [measured as anteriorly-directed ground reaction forces (AGRF)] and trailing limb angle (TLA) show robust inter-relationships, and represent two key modifiable post-stroke gait variables that have biomechanical and clinical relevance. Our recent work demonstrated that real-time biofeedback is a feasible paradigm for modulating AGRF and TLA in able-bodied participants. However, the effects of TLA biofeedback on gait biomechanics of post-stroke individuals are poorly understood. Thus, our objective was to investigate the effects of unilateral, real-time, audiovisual TLA versus AGRF biofeedback on gait biomechanics in post-stroke individuals. METHODS: Nine post-stroke individuals (6 males, age 63 ± 9.8 years, 44.9 months post-stroke) participated in a single session of gait analysis comprised of three types of walking trials: no biofeedback, AGRF biofeedback, and TLA biofeedback. Biofeedback unilaterally targeted deficits on the paretic limb. Dependent variables included peak AGRF, TLA, and ankle plantarflexor moment. One-way repeated measures ANOVA with Bonferroni-corrected post-hoc comparisons were conducted to detect the effect of biofeedback on gait biomechanics variables. RESULTS: Compared to no-biofeedback, both AGRF and TLA biofeedback induced unilateral increases in paretic AGRF. TLA biofeedback induced significantly larger increases in paretic TLA than AGRF biofeedback. AGRF biofeedback increased ankle moment, and both feedback conditions increased non-paretic step length. Both types of biofeedback specifically targeted the paretic limb without inducing changes in the non-paretic limb. CONCLUSIONS: By showing comparable increases in paretic limb gait biomechanics in response to both TLA and AGRF biofeedback, our novel findings provide the rationale and feasibility of paretic TLA as a gait biofeedback target for post-stroke individuals. Additionally, our results provide preliminary insights into divergent biomechanical mechanisms underlying improvements in post-stroke gait induced by these two biofeedback targets. We lay the groundwork for future investigations incorporating greater dosages and longer-term therapeutic effects of TLA biofeedback as a stroke gait rehabilitation strategy. Trial registration NCT03466372.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Anciano , Humanos , Masculino , Persona de Mediana Edad , Fenómenos Biomecánicos/fisiología , Marcha/fisiología , Accidente Cerebrovascular/complicaciones , Rehabilitación de Accidente Cerebrovascular/métodos , Caminata/fisiología
2.
Neural Plast ; 2019: 5190671, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31565049

RESUMEN

Spinal pathways underlying reciprocal flexion-extension contractions have been well characterized, but the extent to which cortically evoked motor-evoked potentials (MEPs) are influenced by antagonist muscle activation remains unclear. A majority of studies using transcranial magnetic stimulation- (TMS-) evoked MEPs to evaluate the excitability of the corticospinal pathway focus on upper extremity muscles. Due to functional and neural control differences between lower and upper limb muscles, there is a need to evaluate methodological factors influencing TMS-evoked MEPs specifically in lower limb musculature. If and to what extent the activation of the nontargeted muscles, such as antagonists, affects TMS-evoked MEPs is poorly understood, and such gaps in our knowledge may limit the rigor and reproducibility of TMS studies. Here, we evaluated the effect of the activation state of the antagonist muscle on TMS-evoked MEPs obtained from the target (agonist) ankle muscle for both tibialis anterior (TA) and soleus muscles. Fourteen able-bodied participants (11 females, age: 26.1 ± 4.1 years) completed one experimental session; data from 12 individuals were included in the analysis. TMS was delivered during 4 conditions: rest, TA activated, soleus activated, and TA and soleus coactivation. Three pairwise comparisons were made for MEP amplitude and coefficient of variability (CV): rest versus coactivation, rest versus antagonist activation, and agonist activation versus coactivation. We demonstrated that agonist-antagonist coactivation enhanced MEP amplitude and reduced MEP CVs for both TA and soleus muscles. Our results provide methodological considerations for future TMS studies and pave the way for future exploration of coactivation-dependent modulation of corticomotor excitability in pathological cohorts such as stroke or spinal cord injury.


Asunto(s)
Articulación del Tobillo/fisiología , Tobillo/fisiología , Potenciales Evocados Motores/fisiología , Contracción Muscular/fisiología , Adulto , Femenino , Humanos , Extremidad Inferior/fisiología , Masculino , Corteza Motora/fisiología , Tractos Piramidales/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto Joven
3.
Front Neurol ; 13: 800338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585850

RESUMEN

Gait dysfunction and fall risk have been well documented in people with Alzheimer's Disease (AD) and individuals with mild cognitive impairment (MCI). Normal locomotor adaptation may be an important prerequisite for normal and safe community walking function, especially in older adults with age-related neural, musculoskeletal, or cardiovascular changes and cognitive impairments. The split-belt walking task is a well-studied and robust method to evaluate locomotor adaptation (e.g., the ability to adjust stepping movements to changing environmental demands). Here, we capitalized on the split-belt adaptation task to test our hypothesis that a decreased capacity for locomotor adaptation may be an important contributing factor and indicator of increased fall risk and cognitive decline in older individuals with MCI and AD. The objectives of this study were to (1) compare locomotor adaptation capacity in MCI and AD compared to healthy older adults (HOA) during split-belt treadmill walking, and (2) evaluate associations between locomotor adaptation and cognitive impairments. Our results demonstrated a significant decrease in split-belt locomotor adaptation magnitude in older individuals with MCI and AD compared to HOA. In addition, we found significant correlations between the magnitude of early adaptation and de-adaptation vs. cognitive test scores, demonstrating that individuals with greater cognitive impairment also display a reduced capacity to adapt their walking in response to the split-belt perturbation. Our study takes an important step toward understanding mechanisms underlying locomotor dysfunction in older individuals with cognitive impairment.

4.
Gait Posture ; 83: 107-113, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33129170

RESUMEN

BACKGROUND: Reduced forward propulsion during gait, measured as the anterior component of the ground reaction force (AGRF), may contribute to slower walking speeds in older adults and gait dysfunction in individuals with neurological impairments. Trailing limb angle (TLA) is a clinically important gait parameter that is associated with AGRF generation. Real-time gait biofeedback can induce modifications in targeted gait parameters, with potential to modulate AGRF and TLA. However, the effects of real-time TLA biofeedback on gait biomechanics have not been studied thus far. RESEARCH QUESTION: What are the effects of unilateral, real-time, audiovisual trailing limb angle biofeedback on gait biomechanics in able-bodied individuals? METHODS: Ten able-bodied adults participated in one session of treadmill-based gait analyses comprising 60-second walking trials under three conditions: no biofeedback, AGRF biofeedback, and TLA biofeedback. Biofeedback was provided unilaterally to the right leg. Dependent variables included AGRF, TLA, ankle moment, and ankle power. One-way repeated measures ANOVA with post-hoc tests were conducted to determine the effect of the biofeedback conditions on gait parameters. RESULTS: Compared to no biofeedback, both AGRF and TLA biofeedback induced significant increases in targeted leg AGRF without concomitant changes to the non-targeted leg AGRF. Targeted leg TLA was significantly larger during TLA biofeedback compared to AGRF biofeedback. Only AGRF biofeedback induced significant increases in ankle power; and only the TLA biofeedback condition induced increases in the non-targeted leg TLA. SIGNIFICANCE: Our novel findings provide support for the feasibility and promise of TLA as a gait biofeedback target. Our study demonstrates that comparable magnitudes of feedback-induced increases in AGRF in response to AGRF and TLA biofeedback may be achieved through divergent biomechanical strategies. Further investigation is needed to uncover the effects of TLA biofeedback on gait parameters in individuals with neuro-pathologies such as spinal cord injury or stroke.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Marcha/fisiología , Caminata/fisiología , Adulto , Biorretroalimentación Psicológica , Femenino , Humanos , Masculino , Adulto Joven
5.
Top Stroke Rehabil ; 28(5): 362-377, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32942960

RESUMEN

BACKGROUND: Fast treadmill walking combined with functional electrical stimulation to ankle muscles (FastFES) is a well-studied gait intervention that improves post-stroke walking function. Although individualized verbal feedback is commonly incorporated during clinical gait training, and a variable practice structure is posited to enhance learning, the influence of these two factors on motor learning during locomotor interventions such as FastFES is poorly understood. OBJECTIVES: To determine if the addition of individualized verbal feedback or variable practice to a FastFES training session enhances motor learning of targeted gait patterns. METHODS: Nine individuals with post-stroke hemiparesis completed a crossover study comprising exposure to 3 dose-matched types of gait training: (1) FastFES (FF), comprising five 6-minute bouts of training with intermittent FES, (2) FF with addition of individualized verbal instructions and faded feedback delivered by a physical therapist (FF+PT), (3) FF with variable gait speed and FES timing (FF+Var). Gait biomechanics data were collected before (Pre), immediately after (Post), and 24-h following (Retention) each training type. Within-session and retention change scores of 3 targeted gait variables were calculated to assess locomotor learning. RESULTS: FF+PT resulted in larger improvements within-session and at retention in trailing limb angle, and a trend for larger improvements in paretic pushoff compared to FF. FF+Var failed to show greater learning of biomechanical variables compared to FF. CONCLUSIONS: Addition of individualized verbal feedback (FF+PT) to a single session of gait training may enhance within- and across-session learning of targeted gait variables in people post-stroke, and merits more investigation.


Asunto(s)
Trastornos Neurológicos de la Marcha , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Fenómenos Biomecánicos , Estudios Cruzados , Retroalimentación , Marcha , Trastornos Neurológicos de la Marcha/etiología , Humanos , Accidente Cerebrovascular/complicaciones , Caminata
6.
Top Stroke Rehabil ; 25(3): 186-193, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29457532

RESUMEN

Objectives Gait training interventions that target paretic propulsion induce improvements in walking speed and function in individuals post-stroke. Previously, we demonstrated that able-bodied individuals increase propulsion unilaterally when provided real-time biofeedback targeting anterior ground reaction forces (AGRF). The purpose of this study was to, for the first time, investigate short-term effects of real-time AGRF gait biofeedback training on post-stroke gait. Methods Nine individuals with post-stroke hemiparesis (6 females, age = 54 ± 12.4 years 39.2 ± 24.4 months post-stroke) completed three 6-minute training bouts on an instrumented treadmill. During training, visual and auditory biofeedback were provided to increase paretic AGRF during terminal stance. Gait biomechanics were evaluated before training, and during retention tests conducted 2, 15, and 30 minutes post-training. Primary dependent variables were paretic and non-paretic peak AGRF; secondary variables included paretic and non-paretic peak trailing limb angle, plantarflexor moment, and step length. In addition to evaluating the effects of biofeedback training on these dependent variables, we compared effects of a 6-minute biofeedback training bout to a non-biofeedback control condition. Results Compared to pre-training, significantly greater paretic peak AGRFs were generated during the 2, 15, and 30-minute retention tests conducted after the 18-minute biofeedback training session. Biofeedback training induced no significant effects on the non-paretic leg. Comparison of a 6-minute biofeedback training bout with a speed-matched control bout without biofeedback demonstrated a main effect for training type, with greater peak AGRF generation during biofeedback. Discussion Our results suggest that AGRF biofeedback may be a feasible and promising gait training strategy to target propulsive deficits in individuals post-stroke.


Asunto(s)
Biorretroalimentación Psicológica/métodos , Terapia por Ejercicio/métodos , Trastornos Neurológicos de la Marcha/terapia , Evaluación de Resultado en la Atención de Salud , Paresia/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/terapia , Adulto , Anciano , Fenómenos Biomecánicos , Femenino , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Persona de Mediana Edad , Paresia/etiología , Accidente Cerebrovascular/complicaciones
7.
Restor Neurol Neurosci ; 36(1): 131-146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29439363

RESUMEN

BACKGROUND: The use of transcranial magnetic stimulation (TMS) to evaluate corticomotor excitability of lower limb (LL) muscles can provide insights about neuroplasticity mechanisms underlying LL rehabilitation. However, to date, a majority of TMS studies have focused on upper limb muscles. Posture-related activation is an important under-investigated factor influencing corticomotor excitability of LL muscles. OBJECTIVE: The purpose of this study was to evaluate effects of posture and background activation on corticomotor excitability of ankle muscles. METHODS: Fourteen young neurologically-unimpaired participants (26.1±4.1 years) completed the study. TMS-evoked motor evoked potentials (MEPs) were recorded from the tibialis anterior (TA) and soleus during 4 conditions - standing, standing coactivation, sitting, and sitting coactivation. TA and soleus MEP amplitudes were compared during: (1) standing versus sitting;(2) standing coactivation (standing while activating both TA and soleus) versus sitting coactivation; and (3) standing coactivation versus standing. For each comparison, background EMG for TA and soleus were matched. Trial-to-trial coefficient of variation of MEP amplitude and coil-positioning errors were additional dependent variables. RESULTS: No differences were observed in TA or soleus MEP amplitudes during standing versus sitting. Compared to sitting coactivation, larger MEPs were observed during standing coactivation for soleus but not TA. Compared to standing, the standing coactivation task demonstrated larger MEPs and reduced trial-to-trial MEP variability. CONCLUSION: Our findings suggest that incorporation of measurements in standing in future TMS studies may provide novel insights into neural circuits controlling LL muscles. Standing and standing coactivation tasks may be beneficial for obtaining functionally-relevant neuroplasticity assessments of LL musculature.


Asunto(s)
Tobillo/inervación , Potenciales Evocados Motores/fisiología , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal/métodos , Adulto , Análisis de Varianza , Electromiografía , Femenino , Humanos , Masculino , Contracción Muscular/fisiología , Neurorretroalimentación , Postura , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA