Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biophys J ; 112(11): 2315-2326, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591604

RESUMEN

G protein-coupled receptors (GPCRs) have evolved a seven-transmembrane helix framework that is responsive to a wide range of extracellular signals. An analysis of the interior packing of family A GPCR crystal structures reveals two clusters of highly packed residues that facilitate tight transmembrane helix association. These clusters are centered on amino acid positions 2.47 and 4.53, which are highly conserved as alanine and serine, respectively. Ala2.47 mediates the interaction between helices H1 and H2, while Ser4.53 mediates the interaction between helices H3 and H4. The helical interfaces outside of these clusters are lined with residues that are more loosely packed, a structural feature that facilitates motion of helices H5, H6, and H7, which is required for receptor activation. Mutation of the conserved small side chain at position 4.53 within packing cluster 2 is shown to disrupt the structure of the visual receptor rhodopsin, whereas sites in packing cluster 1 (e.g., positions 1.46 and 2.47) are more tolerant to mutation but affect the overall stability of the protein. These findings reveal a common structural scaffold of GPCRs that is important for receptor folding and activation.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Enlace de Hidrógeno , Modelos Moleculares , Movimiento (Física) , Mutación , Conformación Proteica , Pliegue de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Rodopsina/química , Rodopsina/genética , Rodopsina/metabolismo
2.
Biochim Biophys Acta ; 1837(5): 683-93, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24183693

RESUMEN

Rhodopsin is a classical two-state G protein-coupled receptor (GPCR). In the dark, its 11-cis retinal chromophore serves as an inverse agonist to lock the receptor in an inactive state. Retinal-protein and protein-protein interactions have evolved to reduce the basal activity of the receptor in order to achieve low dark noise in the visual system. In contrast, absorption of light triggers rapid isomerization of the retinal, which drives the conversion of the receptor to a fully active conformation. Several specific protein-protein interactions have evolved that maintain the lifetime of the active state in order to increase the sensitivity of this receptor for dim-light vision in vertebrates. In this article, we review the molecular interactions that stabilize rhodopsin in the dark-state and describe the use of solid-state NMR spectroscopy for probing the structural changes that occur upon light-activation. Amino acid conservation provides a guide for those interactions that are common in the class A GPCRs as well as those that are unique to the visual system. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Asunto(s)
Secuencia Conservada , Modelos Moleculares , Retinaldehído/química , Rodopsina/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Isomerismo , Luz , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Retinaldehído/metabolismo , Rodopsina/metabolismo
3.
Proc Natl Acad Sci U S A ; 107(46): 19861-6, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21041664

RESUMEN

Light-induced isomerization of the 11-cis-retinal chromophore in the visual pigment rhodopsin triggers displacement of the second extracellular loop (EL2) and motion of transmembrane helices H5, H6, and H7 leading to the active intermediate metarhodopsin II (Meta II). We describe solid-state NMR measurements of rhodopsin and Meta II that target the molecular contacts in the region of the ionic lock involving these three helices. We show that a contact between Arg135(3.50) and Met257(6.40) forms in Meta II, consistent with the outward rotation of H6 and breaking of the dark-state Glu134(3.49)-Arg135(3.50)-Glu247(6.30) ionic lock. We also show that Tyr223(5.58) and Tyr306(7.53) form molecular contacts with Met257(6.40). Together these results reveal that the crystal structure of opsin in the region of the ionic lock reflects the active state of the receptor. We further demonstrate that Tyr223(5.58) and Ala132(3.47) in Meta II stabilize helix H5 in an active orientation. Mutation of Tyr223(5.58) to phenylalanine or mutation of Ala132(3.47) to leucine decreases the lifetime of the Meta II intermediate. Furthermore, the Y223F mutation is coupled to structural changes in EL2. In contrast, mutation of Tyr306(7.53) to phenylalanine shows only a moderate influence on the Meta II lifetime and is not coupled to EL2.


Asunto(s)
Secuencia Conservada/genética , Rodopsina/química , Rodopsina/metabolismo , Tirosina/metabolismo , Alanina/genética , Sustitución de Aminoácidos/genética , Animales , Bovinos , Cristalografía por Rayos X , Células HEK293 , Humanos , Activación del Canal Iónico , Espectroscopía de Resonancia Magnética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Conformación Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Transducción de Señal , Relación Estructura-Actividad
4.
Biochim Biophys Acta ; 1808(4): 1170-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21262196

RESUMEN

Sequence analysis of the class A G protein-coupled receptors (GPCRs) reveals that most of the highly conserved sites are located in the transmembrane helices. A second level of conservation exists involving those residues that are conserved as a group characterized by small and/or weakly polar side chains (Ala, Gly, Ser, Cys, Thr). These positions can have group conservation levels of up to 99% across the class A GPCRs and have been implicated in mediating helix-helix interactions in membrane proteins. We have previously shown that mutation of group-conserved residues present on transmembrane helices H2-H4 in the ß(2)-adrenergic receptor (ß(2)-AR) can influence both receptor expression and function. We now target the group-conserved sites, Gly315(7.42) and Ser319(7.46), on H7 for structure-function analysis. Replacing Ser319(7.46) with smaller amino acids (Ala or Gly) did not influence the ability of the mutant receptors to bind to the antagonist dihydroalprenolol (DHA) but resulted in ~15-20% agonist-independent activity. Replacement of Ser319(7.46) with the larger amino acid leucine lowered the expression of the S319L mutant and its ability to bind DHA. Both the G315A and G315S mutants also exhibited agonist-independent signaling, while the G315L mutant did not show specific binding to DHA. These data indicate that Gly315(7.42) and Ser319(7.46) are stabilizing ß(2)-AR in an inactive conformation. We discuss our results in the context of van der Waals interactions of Gly315(7.42) with Trp286(6.48) and hydrogen bonding interactions of Ser319(7.46) with amino acids on H1-H2-H7 and with structural water.


Asunto(s)
Aminoácidos/metabolismo , Estructura Secundaria de Proteína , Receptores Adrenérgicos beta 2/metabolismo , Relación Estructura-Actividad , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Sustitución de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animales , Sitios de Unión/genética , Células COS , Chlorocebus aethiops , Cricetinae , AMP Cíclico/metabolismo , Dihidroalprenolol/metabolismo , Dihidroalprenolol/farmacología , Glicina/química , Glicina/genética , Glicina/metabolismo , Células HEK293 , Humanos , Enlace de Hidrógeno , Isoproterenol/metabolismo , Isoproterenol/farmacología , Modelos Moleculares , Mutación , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Ensayo de Unión Radioligante , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Serina/química , Serina/genética , Serina/metabolismo
5.
J Am Chem Soc ; 131(42): 15160-9, 2009 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-19795853

RESUMEN

The visual pigment rhodopsin is unique among the G protein-coupled receptors in having an 11-cis retinal chromophore covalently bound to the protein through a protonated Schiff base linkage. The chromophore locks the visual receptor in an inactive conformation through specific steric and electrostatic interactions. This efficient inverse agonist is rapidly converted to an agonist, the unprotonated Schiff base of all-trans retinal, upon light activation. Here, we use magic angle spinning NMR spectroscopy to obtain the (13)C chemical shifts (C5-C20) of the all-trans retinylidene chromophore and the (15)N chemical shift of the Schiff base nitrogen in the active metarhodopsin II intermediate. The retinal chemical shifts are sensitive to the conformation of the chromophore and its molecular interactions within the protein-binding site. Comparison of the retinal chemical shifts in metarhodopsin II with those of retinal model compounds reveals that the Schiff base environment is polar. In particular, the (13)C15 and (15)Nepsilon chemical shifts indicate that the C horizontal lineN bond is highly polarized in a manner that would facilitate Schiff base hydrolysis. We show that a strong perturbation of the retinal (13)C12 chemical shift observed in rhodopsin is reduced in wild-type metarhodopsin II and in the E181Q mutant of rhodopsin. On the basis of the T(1) relaxation time of the retinal (13)C18 methyl group and the conjugated retinal (13)C5 and (13)C8 chemical shifts, we have determined that the conformation of the retinal C6-C7 single bond connecting the beta-ionone ring and the retinylidene chain is 6-s-cis in both the inactive and the active states of rhodopsin. These results are discussed within the general framework of ligand-activated G protein-coupled receptors.


Asunto(s)
Retinaldehído/química , Rodopsina/química , Sitios de Unión , Línea Celular , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Mutación , Procesos Fotoquímicos , Estructura Terciaria de Proteína , Retinaldehído/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
6.
J Mol Biol ; 357(1): 163-72, 2006 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-16414074

RESUMEN

Isomerization of the 11-cis retinal chromophore in the visual pigment rhodopsin is coupled to motion of transmembrane helix H6 and receptor activation. We present solid-state magic angle spinning NMR measurements of rhodopsin and the metarhodopsin II intermediate that support the proposal that interaction of Trp265(6.48) with the retinal chromophore is responsible for stabilizing an inactive conformation in the dark, and that motion of the beta-ionone ring allows Trp265(6.48) and transmembrane helix H6 to adopt active conformations in the light. Two-dimensional dipolar-assisted rotational resonance NMR measurements are made between the C19 and C20-methyl groups of the retinal and uniformly 13C-labeled Trp265(6.48). The retinal C20-Trp265(6.48) contact present in the dark-state of rhodopsin is lost in metarhodopsin II, and a new contact is formed with the C19 methyl group. We have previously shown that the retinal translates 4-5 A toward H5 in metarhodopsin II. This motion, in conjunction with the Trp-C19 contact, implies that the Trp265(6.48) side-chain moves significantly upon rhodopsin activation. NMR measurements also show that a packing interaction in rhodopsin between Trp265(6.48) and Gly121(3.36) is lost in metarhodopsin II, consistent with H6 motion away from H3. However, a close contact between Gly120(3.35) on H3 and Met86(2.53) on H2 is observed in both rhodopsin and metarhodopsin II, suggesting that H3 does not change orientation significantly upon receptor activation.


Asunto(s)
Estructura Secundaria de Proteína , Rodopsina/metabolismo , Triptófano/metabolismo , Animales , Sitios de Unión , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsina/química , Rodopsina/genética
7.
J Mol Biol ; 347(4): 803-12, 2005 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15769471

RESUMEN

Hydrogen bonding interactions between transmembrane helices stabilize the visual pigment rhodopsin in an inactive conformation in the dark. The crystal structure of rhodopsin has previously revealed that Glu122 and Trp126 on transmembrane helix H3 form a complex hydrogen bonding network with Tyr206 and His211 on H5, while the indole nitrogen of Trp265 on H6 forms a water-mediated hydrogen bond with Asn302 on H7. Here, we use solid-state magic angle spinning NMR spectroscopy to probe the changes in hydrogen bonding upon rhodopsin activation. The NMR chemical shifts of 15N-labeled tryptophan are consistent with the indole nitrogens of Trp126 and Trp265 becoming more weakly hydrogen bonded between rhodopsin and metarhodopsin II. The NMR chemical shifts of 15N-labeled histidine show that His211 is neutral; the unprotonated imidazole nitrogen is not coordinated to zinc in rhodopsin and becomes more strongly hydrogen bonded in metarhodopsin II. Moreover, measurements of rhodopsin containing 13C-labeled histidine show that a strong hydrogen bond between the side-chain of Glu122 and the backbone carbonyl of His211 is disrupted in metarhodopsin II. The implications of these observations for the activation mechanism of rhodopsin are discussed.


Asunto(s)
Rodopsina/química , Rodopsina/metabolismo , Línea Celular , Cristalografía por Rayos X , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Hidrógeno/química , Enlace de Hidrógeno , Indoles/química , Mutación/genética , Nitrógeno/química , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Rodopsina/genética , Triptófano/química , Triptófano/metabolismo , Zinc/química
8.
Nat Struct Mol Biol ; 23(8): 738-43, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27376589

RESUMEN

Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins.


Asunto(s)
Rodopsina/química , Regulación Alostérica , Animales , Bovinos , Células HEK293 , Humanos , Enlace de Hidrógeno , Cetonas/química , Fototransducción , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Rodopsina/fisiología , Transducina/química
9.
Nat Commun ; 7: 12683, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27585742

RESUMEN

The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its ß-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation.


Asunto(s)
Retina/fisiología , Retinaldehído/química , Rodopsina/metabolismo , Línea Celular , Células HEK293 , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier
10.
J Mol Biol ; 337(3): 713-29, 2004 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-15019789

RESUMEN

Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.


Asunto(s)
Proteínas de la Membrana/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Membrana/química , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/química , Rodopsina/química , Homología Estructural de Proteína
11.
Genetics ; 160(2): 429-43, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11861550

RESUMEN

The binding of alpha-factor to its receptor (Ste2p) activates a G-protein-signaling pathway leading to conjugation of MATa cells of the budding yeast S. cerevisiae. We conducted a genetic screen to identify constitutively activating mutations in the N-terminal region of the alpha-factor receptor that includes transmembrane domains 1-5. This approach identified 12 unique constitutively activating mutations, the strongest of which affected polar residues at the cytoplasmic ends of transmembrane domains 2 and 3 (Asn84 and Gln149, respectively) that are conserved in the alpha-factor receptors of divergent yeast species. Targeted mutagenesis, in combination with molecular modeling studies, suggested that Gln149 is oriented toward the core of the transmembrane helix bundle where it may be involved in mediating an interaction with Asn84. These residues appear to play specific roles in maintaining the inactive conformation of the protein since a variety of mutations at either position cause constitutive receptor signaling. Interestingly, the activity of many mammalian G-protein-coupled receptors is also regulated by conserved polar residues (the E/DRY motif) at the cytoplasmic end of transmembrane domain 3. Altogether, the results of this study suggest a conserved role for the cytoplasmic end of transmembrane domain 3 in regulating the activity of divergent G-protein-coupled receptors.


Asunto(s)
Receptores de Péptidos/fisiología , Saccharomyces cerevisiae/fisiología , Factores de Transcripción , Proteínas de Unión al GTP/fisiología , Modelos Moleculares , Mutación , Conformación Proteica , Estructura Terciaria de Proteína/fisiología , Receptores del Factor de Conjugación , Receptores de Péptidos/química , Receptores de Péptidos/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología , Relación Estructura-Actividad
12.
Methods Enzymol ; 522: 365-89, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23374193

RESUMEN

G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and mediate a diversity of cellular processes. These receptors have a common seven-transmembrane helix structure, yet have evolved to respond to literally thousands of different ligands. In this chapter, we describe the use of magic angle spinning solid-state NMR spectroscopy for characterizing the structure and dynamics of GPCRs. Solid-state NMR spectroscopy is well suited for structural measurements in both detergent micelles and membrane bilayer environments. We first outline the methods for large-scale production of stable, functional receptors containing (13)C- and (15)N-labeled amino acids. The expression methods make use of eukaryotic HEK293S cell lines that produce correctly folded, fully functional receptors. We subsequently describe the basic methods used for magic angle spinning solid-state NMR measurements of chemical shifts and dipolar couplings, which reveal detailed information on GPCR structure and dynamics.


Asunto(s)
Membrana Dobles de Lípidos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Medios de Cultivo , Expresión Génica , Células HEK293 , Humanos , Marcaje Isotópico , Ligandos , Micelas , Unión Proteica , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/genética
13.
PLoS One ; 8(9): e76481, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086743

RESUMEN

G protein-coupled receptors (GPCRs) exhibit some level of basal signaling even in the absence of a bound agonist. This basal or constitutive signaling can have important pathophysiological roles. In the past few years, a number of high resolution crystal structures of GPCRs have been reported, including two crystal structures of constitutively active mutants (CAM) of the dim-light receptor, rhodopsin. The structural characterizations of CAMs are impeded by the lack of proper expression systems. The thromboxane A2 receptor (TP) is a GPCR that mediates vasoconstriction and promotes thrombosis in response to the binding of thromboxane. Here, we report on the expression and purification of a genetic variant and CAM in TP, namely A160T, using tetracycline-inducible HEK293S-TetR and HEK293S (GnTI¯)-TetR cell lines. Expression of the TP and the A160T genes in these mammalian cell lines resulted in a 4-fold increase in expression to a level of 15.8 ±0.3 pmol of receptor/mg of membrane protein. The receptors expressed in the HEK293S (GnTI(-))-TetR cell line showed homogeneous glycosylation. The functional yield of the receptors using a single step affinity purification was 45 µg/106 cells. Temperature- dependent secondary structure changes of the purified TP and A160T receptors were characterized using circular dichroism (CD) spectropolarimetry. The CD spectra shows that the loss of activity or thermal sensitivity that was previously observed for the A160T mutant, is not owing to large unfolding of the protein but rather to a more subtle effect. This is the first study to report on the successful high-level expression, purification, and biophysical characterization of a naturally occurring, diffusible ligand activated GPCR CAM.


Asunto(s)
Ingeniería Genética/métodos , Polimorfismo Genético , Receptores de Tromboxano A2 y Prostaglandina H2/genética , Receptores de Tromboxano A2 y Prostaglandina H2/metabolismo , Secuencia de Aminoácidos , Detergentes/farmacología , Expresión Génica , Células HEK293 , Humanos , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Receptores de Tromboxano A2 y Prostaglandina H2/química , Receptores de Tromboxano A2 y Prostaglandina H2/aislamiento & purificación , Tetraciclina/farmacología
14.
J Phys Chem B ; 116(35): 10477-89, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22564141

RESUMEN

Absorption of light by the visual pigment rhodopsin triggers a rapid cis-trans photoisomerization of its retinal chromophore and a series of conformational changes in both the retinal and protein. The largest structural change is an outward tilt of transmembrane helix H6 that increases the separation of the intracellular ends of H6 and H3 and opens up the G-protein binding site. In the dark state of rhodopsin, Glu247 at the intracellular end of H6 forms a salt bridge with Arg135 on H3 to tether H6 in an inactive conformation. The Arg135-Glu247 interaction is broken in the active state of the receptor, and Arg135 is then stabilized by interactions with Tyr223, Met257, and Tyr306 on helices H5, H6, and H7, respectively. To address the mechanism of H6 motion, solid-state NMR measurements are undertaken of Metarhodopsin I (Meta I), the intermediate preceding the active Metarhodopsin II (Meta II) state of the receptor. (13)C NMR dipolar recoupling measurements reveal an interhelical contact of (13)Cζ-Arg135 with (13)Cε-Met257 in Meta I but not with (13)Cζ-Tyr223 or (13)Cζ-Tyr306. These observations suggest that helix H6 has rotated in the formation of Meta I but that structural changes involving helices H5 and H7 have not yet occurred. Together, our results provide insights into the sequence of events leading up to the outward motion of H6, a hallmark of G protein-coupled receptor activation.


Asunto(s)
Rodopsina/química , Sitios de Unión , Isótopos de Carbono/química , Células HEK293 , Humanos , Isomerismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Isótopos de Nitrógeno/química , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
15.
J Mol Biol ; 396(3): 510-27, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20004206

RESUMEN

Structural restraints provided by solid-state NMR measurements of the metarhodopsin II intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin II intermediate (>1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from 13C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor.


Asunto(s)
Luz , Simulación de Dinámica Molecular , Rodopsina/química , Rodopsina/metabolismo , Animales , Bovinos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Proteica/efectos de la radiación , Estructura Terciaria de Proteína
17.
J Biol Chem ; 284(15): 10190-201, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19176531

RESUMEN

Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific (13)C-labeled sites located on the beta-ionone ring, polyene chain, and Schiff base end of the retinal. We show that the retinal C20 methyl group rotates toward the second extracellular loop (EL2), which forms a cap on the retinal binding site in the inactive receptor. Despite the trajectory of the methyl group, we observed an increase in the C20-Gly(188) (EL2) distance consistent with an increase in separation between the retinal and EL2 upon activation. NMR distance constraints showed that the beta-ionone ring moves to a position between Met(207) and Phe(208) on transmembrane helix H5. Movement of the ring toward H5 was also reflected in increased separation between the Cepsilon carbons of Lys(296) (H7) and Met(44) (H1) and between Gly(121) (H3) and the retinal C18 methyl group. Helix-helix interactions involving the H3-H5 and H4-H5 interfaces were also found to change in the formation of metarhodopsin II reflecting increased retinal-protein interactions in the region of Glu(122) (H3) and His(211) (H5). We discuss the location of the retinal in metarhodopsin II and its interaction with sequence motifs, which are highly conserved across the pharmaceutically important class A GPCR family, with respect to the mechanism of receptor activation.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Retina/metabolismo , Rodopsina/química , Segmento Externo de la Célula en Bastón/metabolismo , Sitios de Unión , Línea Celular , Humanos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Polienos/química , Conformación Proteica , Rodopsina/metabolismo , Bases de Schiff/química
18.
Nat Struct Mol Biol ; 16(2): 168-75, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19182802

RESUMEN

The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state (13)C NMR spectroscopy between the retinal chromophore and the beta4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor.


Asunto(s)
Rodopsina/química , Animales , Bovinos , Línea Celular , Humanos , Luz , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Retinaldehído/química , Retinaldehído/metabolismo , Rodopsina/metabolismo
19.
Proc Natl Acad Sci U S A ; 104(17): 7027-32, 2007 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-17438264

RESUMEN

G protein-coupled receptors (GPCRs) belonging to class A contain several highly conserved (>90%) amino acids in their transmembrane helices. Results of mutational studies of these highly conserved residues suggest a common mechanism for locking GPCRs in an inactive conformation and for their subsequent activation upon ligand binding. Recently, a second set of sites in the transmembrane helices has been identified in which amino acids with small side chains, such as Gly, Ala, Ser, Thr, and Cys, are highly conserved (>90%) when considered as a group. These group-conserved residues have not been recognized as having essential structural or functional roles. To determine the role of group-conserved residues in the beta(2)-adrenergic receptor (beta(2)-AR), amino acid replacements guided by molecular modeling were carried out at key positions in transmembrane helices H2-H4. The most significant changes in receptor expression and activity were observed upon replacement of the amino acids Ser-161 and Ser-165 in H4. Substitution at these sites by larger residues lowered the expression and activity of the receptor but did not affect specific binding to the antagonist ligand dihydroalprenolol. A second site mutation, V114A, rescued the low expression of the S165V mutant. Substitution of other group-conserved residues in H2-H4 by larger amino acids lowered receptor activity in the order Ala-128, Ala-76, Ser-120, and Ala-78. Together these data provide comprehensive analysis of group-conserved residues in a class A GPCR and allow insights into the roles of these residues in GPCR structure and function.


Asunto(s)
Secuencia Conservada , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Secuencia de Aminoácidos , Animales , Unión Competitiva , Células COS , Chlorocebus aethiops , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Ligandos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Estructura Secundaria de Proteína , Transducción de Señal , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA