Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279301

RESUMEN

Hypericum perforatum (St. John's wort) has been described to be beneficial for the treatment of Alzheimer's disease (AD). Different extractions have demonstrated efficiency in mice and humans, esp. extracts with a low hypericin and hyperforin content to reduce side effects such as phototoxicity. In order to systematically elucidate the therapeutic effects of H. perforatum extracts with different polarities, APP-transgenic mice were treated with a total ethanol extract (TE), a polar extract obtained from TE, and an apolar supercritical CO2 (scCO2) extract. The scCO2 extract was formulated with silicon dioxide (SiO2) for better oral application. APP-transgenic mice were treated with several extracts (total, polar, apolar) at different concentrations. We established an early treatment paradigm from the age of 40 days until the age of 80 days, starting before the onset of cerebral ß-amyloid (Aß) deposition at 45 days of age. Their effects on intracerebral soluble and insoluble Aß were analyzed using biochemical analyses. Our study confirms that the scCO2H. perforatum formulation shows better biological activity against Aß-related pathological effects than the TE or polar extracts. Clinically, the treatment resulted in a dose-dependent improvement in food intake with augmentation of the body weight, and, biochemically, it resulted in a significant reduction in both soluble and insoluble Aß (-27% and -25%, respectively). We therefore recommend apolar H. perforatum extracts for the early oral treatment of patients with mild cognitive impairment or early AD.


Asunto(s)
Enfermedad de Alzheimer , Hypericum , Humanos , Ratones , Animales , Lactante , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoterapia , Hypericum/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Dióxido de Silicio/uso terapéutico , Péptidos beta-Amiloides/toxicidad , Ratones Transgénicos
2.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36499090

RESUMEN

Huntington's disease (HD) is a lethal neurodegenerative disorder without efficient therapeutic options. The inefficient translation from preclinical and clinical research into clinical use is mainly attributed to the lack of (i) understanding of disease initiation, progression, and involved molecular mechanisms; (ii) knowledge of the possible HD target space and general data awareness; (iii) detailed characterizations of available disease models; (iv) better suitable models; and (v) reliable and sensitive biomarkers. To generate robust HD-like symptoms in a mouse model, the neomycin resistance cassette was excised from zQ175 mice, generating a new line: zQ175Δneo. We entirely describe the dynamics of behavioral, neuropathological, and immunohistological changes from 15-57 weeks of age. Specifically, zQ175Δneo mice showed early astrogliosis from 15 weeks; growth retardation, body weight loss, and anxiety-like behaviors from 29 weeks; motor deficits and reduced muscular strength from 36 weeks; and finally slight microgliosis at 57 weeks of age. Additionally, we collected the entire bioactivity network of small-molecule HD modulators in a multitarget dataset (HD_MDS). Hereby, we uncovered 358 unique compounds addressing over 80 different pharmacological targets and pathways. Our data will support future drug discovery approaches and may serve as useful assessment platform for drug discovery and development against HD.


Asunto(s)
Enfermedad de Huntington , Animales , Ratones , Enfermedad de Huntington/metabolismo , Técnicas de Sustitución del Gen , Modelos Animales de Enfermedad , Cognición , Descubrimiento de Drogas
3.
Mol Pharmacol ; 96(2): 138-147, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31189668

RESUMEN

ATP-binding cassette (ABC) transporters such as ABCB1 (P-glycoprotein), ABCC1 (MRP1), and ABCG2 (BCRP) are well known for their role in rendering cancer cells resistant to chemotherapy. Additionally, recent research provided evidence that, along with other ABC transporters (ABCA1 and ABCA7), they might be cornerstones to tackle neurodegenerative diseases. Overcoming chemoresistance in cancer, understanding drug-drug interactions, and developing efficient and specific drugs that alter ABC transporter function are hindered by a lack of in vivo research models, which are fully predictive for humans. Hence, the humanization of ABC transporters in mice has become a major focus in pharmaceutical and neurodegenerative research. Here, we present a characterization of the first Abcc1 humanized mouse line. To preserve endogenous expression profiles, we chose to generate a knockin mouse model that leads to the expression of a chimeric protein that is fully human except for one amino acid. We found robust mRNA and protein expression within all major organs analyzed (brain, lung, spleen, and kidney). Furthermore, we demonstrate the functionality of the expressed human ABCC1 protein in brain and lungs using functional positron emission tomography imaging in vivo. Through the introduction of loxP sites, we additionally enabled this humanized mouse model for highly sophisticated studies involving cell type-specific transporter ablation. Based on our data, the presented mouse model appears to be a promising tool for the investigation of cell-specific ABCC1 function. It can provide a new basis for better translation of preclinical research.


Asunto(s)
Técnicas de Sustitución del Gen/métodos , Pulmón/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Animales , Encéfalo/metabolismo , Humanos , Riñón/metabolismo , Ratones , Ratones Noqueados , Modelos Animales , Tomografía de Emisión de Positrones , Bazo/metabolismo , Distribución Tisular
4.
J Neurosci Methods ; : 110239, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102902

RESUMEN

BACKGROUND: Mass spectrometry (MS)-based cerebrospinal fluid (CSF) proteomics is an important method for discovering biomarkers of neurodegenerative diseases. CSF serves as a reservoir for interstitial fluid (ISF), and extensive communication between the two fluid compartments helps to remove waste products from the brain. NEW METHOD: We performed proteomic analyses of both CSF and ISF fluid compartments using intracerebral microdialysis to validate and detect novel biomarkers of Alzheimer's disease (AD) in APPtg and C57Bl/6J control mice. RESULTS: We identified up to 625 proteins in ISF and 4,483 proteins in CSF samples. By comparing the biofluid profiles of APPtg and C57Bl/6J mice, we detected 37 and 108 significantly up- and downregulated candidates, respectively. In ISF, 7 highly regulated proteins, such as Gfap, Aldh1l1, Gstm1, and Txn, have already been implicated in AD progression, whereas in CSF, 9 out of 14 highly regulated proteins, such as Apba2, Syt12, Pgs1 and Vsnl1, have also been validated to be involved in AD pathogenesis. In addition, we also detected new interesting regulated proteins related to the control of synapses and neurotransmission (Kcna2, Cacng3, and Clcn6) whose roles as AD biomarkers should be further investigated. COMPARISON WITH EXISTING METHODS: This newly established combined protocol provides better insight into the mutual communication between ISF and CSF as an analysis of tissue or CSF compartments alone. CONCLUSIONS: The use of multiple fluid compartments, ISF and CSF, for the detection of their biological communication enables better detection of new promising AD biomarkers.

5.
Biomolecules ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36830699

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia. Fingolimod has previously shown beneficial effects in different animal models of AD. However, it has shown contradictory effects when it has been applied at early disease stages. Our objective was to evaluate fingolimod in two different treatment paradigms. To address this aim, we treated male and female APP-transgenic mice for 50 days, starting either before plaque deposition at 50 days of age (early) or at 125 days of age (late). To evaluate the effects, we investigated the neuroinflammatory and glial markers, the Aß load, and the concentration of the brain-derived neurotrophic factor (BDNF). We found a reduced Aß load only in male animals in the late treatment paradigm. These animals also showed reduced microglia activation and reduced IL-1ß. No other treatment group showed any difference in comparison to the controls. On the other hand, we detected a linear correlation between BDNF and the brain Aß concentrations. The fingolimod treatment has shown beneficial effects in AD models, but the outcome depends on the neuroinflammatory state at the start of the treatment. Thus, according to our data, a fingolimod treatment would be effective after the onset of the first AD symptoms, mainly affecting the neuroinflammatory reaction to the ongoing Aß deposition.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Masculino , Femenino , Clorhidrato de Fingolimod/farmacología , Precursor de Proteína beta-Amiloide , Péptidos beta-Amiloides , Factor Neurotrófico Derivado del Encéfalo , Ratones Transgénicos , Modelos Animales de Enfermedad
6.
Biology (Basel) ; 12(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37508364

RESUMEN

Alzheimer's disease (AD), the leading cause of dementia, is a growing health issue with very limited treatment options. To meet the need for novel therapeutics, existing drugs with additional preferred pharmacological profiles could be recruited. This strategy is known as 'drug repurposing'. Here, we describe dimethyl fumarate (DMF), a drug approved to treat multiple sclerosis (MS), to be tested as a candidate for other brain diseases. We used an APP-transgenic model (APPtg) of senile ß-amyloidosis mice to further investigate the potential of DMF as a novel AD therapeutic. We treated male and female APPtg mice through drinking water at late stages of ß-amyloid (Aß) deposition. We found that DMF treatment did not result in modulating effects on Aß deposition at this stage. Interestingly, we found that glutathione-modified DMF interacts with the ATP-binding cassette transporter ABCC1, an important gatekeeper at the blood-brain and blood-plexus barriers and a key player for Aß export from the brain. Our findings suggest that ABCC1 prevents the effects of DMF, which makes DMF unsuitable as a novel therapeutic drug against AD. The discovered effects of ABCC1 also have implications for DMF treatment of multiple sclerosis.

7.
J Neurosci Methods ; 290: 145-150, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28754434

RESUMEN

BACKGROUND: Implanted osmotic minipumps are commonly used for long-term, brain-targeted delivery of a wide range of experimental agents by being connected to a catheter and a cannula. During the stereotactical surgery procedure, the cannula has to be placed correctly in the x-y directions and also with respect to the injection point in the z-direction (deepness). However, the flat fixation base of available cannula holders doesn't allow an easy, secure fixation onto the curve-shaped skull. NEW METHOD: We have developed a modified method for a better fixation of the cannula holder by using an easy-to-produce, skull-shaped silicone spacer as fixation adapter. RESULTS: We describe the application and its fast and reliable production in the lab. COMPARISON WITH EXISTING METHOD(S): Superglue or cement is currently being used as the method of choice. However, the curve-shaped skull surface does not fit well with the flat and rigid cannula adapter which leads to fixation problems over time causing wide infusion channels and often also to leakage problems from intracerebrally applied agents towards the surface meninges. As another consequence of the inappropriate fixation, the cannula may loosen from the skull before the end of the experiment or it causes damage to the brain tissue, harming the animals with leading to a failure of the whole experiment. CONCLUSIONS: The easy-to-produce spacer facilitates the crucial step of long-term, stereotactic brain infusion experiments with intracerebral catheters in a highly secure and reproducible way.


Asunto(s)
Encéfalo , Cánula , Sistemas de Liberación de Medicamentos/instrumentación , Bombas de Infusión Implantables , Animales , Encéfalo/diagnóstico por imagen , Sistemas de Liberación de Medicamentos/métodos , Imagenología Tridimensional , Masculino , Ratones , Ratones Endogámicos C57BL , Siliconas , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA