Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 27(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36432117

RESUMEN

Statistical mechanics has grown without bounds in space. Statistical mechanics of noninteracting point particles in an unbounded perfect gas is widely used to describe liquids like concentrated salt solutions of life and electrochemical technology, including batteries. Liquids are filled with interacting molecules. A perfect gas is a poor model of a liquid. Statistical mechanics without spatial bounds is impossible as well as imperfect, if molecules interact as charged particles, as nearly all atoms do. The behavior of charged particles is not defined until boundary structures and values are defined because charges are governed by Maxwell's partial differential equations. Partial differential equations require boundary structures and conditions. Boundary conditions cannot be defined uniquely 'at infinity' because the limiting process that defines 'infinity' includes such a wide variety of structures and behaviors, from elongated ellipses to circles, from light waves that never decay, to dipolar fields that decay steeply, to Coulomb fields that hardly decay at all. Boundaries and boundary conditions needed to describe matter are not prominent in classical statistical mechanics. Statistical mechanics of bounded systems is described in the EnVarA system of variational mechanics developed by Chun Liu, more than anyone else. EnVarA treatment does not yet include Maxwell equations.


Asunto(s)
Iones
2.
Entropy (Basel) ; 22(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33286322

RESUMEN

We have developed a molecular mean-field theory-fourth-order Poisson-Nernst-Planck-Bikerman theory-for modeling ionic and water flows in biological ion channels by treating ions and water molecules of any volume and shape with interstitial voids, polarization of water, and ion-ion and ion-water correlations. The theory can also be used to study thermodynamic and electrokinetic properties of electrolyte solutions in batteries, fuel cells, nanopores, porous media including cement, geothermal brines, the oceanic system, etc. The theory can compute electric and steric energies from all atoms in a protein and all ions and water molecules in a channel pore while keeping electrolyte solutions in the extra- and intracellular baths as a continuum dielectric medium with complex properties that mimic experimental data. The theory has been verified with experiments and molecular dynamics data from the gramicidin A channel, L-type calcium channel, potassium channel, and sodium/calcium exchanger with real structures from the Protein Data Bank. It was also verified with the experimental or Monte Carlo data of electric double-layer differential capacitance and ion activities in aqueous electrolyte solutions. We give an in-depth review of the literature about the most novel properties of the theory, namely Fermi distributions of water and ions as classical particles with excluded volumes and dynamic correlations that depend on salt concentration, composition, temperature, pressure, far-field boundary conditions etc. in a complex and complicated way as reported in a wide range of experiments. The dynamic correlations are self-consistent output functions from a fourth-order differential operator that describes ion-ion and ion-water correlations, the dielectric response (permittivity) of ionic solutions, and the polarization of water molecules with a single correlation length parameter.

3.
Entropy (Basel) ; 22(3)2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33286099

RESUMEN

In this work, the dependence of reversal potentials and zero-current fluxes on diffusion coefficients are examined for ionic flows through membrane channels. The study is conducted for the setup of a simple structure defined by the profile of permanent charges with two mobile ion species, one positively charged (cation) and one negatively charged (anion). Numerical observations are obtained from analytical results established using geometric singular perturbation analysis of classical Poisson-Nernst-Planck models. For 1:1 ionic mixtures with arbitrary diffusion constants, Mofidi and Liu (arXiv:1909.01192) conducted a rigorous mathematical analysis and derived an equation for reversal potentials. We summarize and extend these results with numerical observations for biological relevant situations. The numerical investigations on profiles of the electrochemical potentials, ion concentrations, and electrical potential across ion channels are also presented for the zero-current case. Moreover, the dependence of current and fluxes on voltages and permanent charges is investigated. In the opinion of the authors, many results in the paper are not intuitive, and it is difficult, if not impossible, to reveal all cases without investigations of this type.

4.
J Chem Phys ; 148(5): 054501, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29421887

RESUMEN

The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-Hückel models to calculate activity coefficients of aqueous mixtures of the most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-Hückel theory that does not take steric and correlation effects of ions and water into account. By contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner.

5.
Physiology (Bethesda) ; 28(1): 28-38, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23280355

RESUMEN

Ionic solutions are dominated by interactions because they must be electrically neutral, but classical theory assumes no interactions. Biological solutions are rather like seawater, concentrated enough so that the diameter of ions also produces important interactions. In my view, the theory of complex fluids is needed to deal with the interacting reality of biological solutions.


Asunto(s)
Interacciones de Partículas Elementales , Iones , Soluciones , Animales , Humanos , Canales Iónicos/fisiología , Modelos Biológicos , Concentración Osmolar
6.
J Chem Phys ; 141(7): 075102, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25149816

RESUMEN

The anomalous mole fraction effect of L-type calcium channels is analyzed using a Fermi like distribution with the experimental data of Almers and McCleskey [J. Physiol. 353, 585 (1984)] and the atomic resolution model of Lipkind and Fozzard [Biochemistry 40, 6786 (2001)] of the selectivity filter of the channel. Much of the analysis is algebraic, independent of differential equations. The Fermi distribution is derived from the configuration entropy of ions and water molecules with different sizes, different valences, and interstitial voids between particles. It allows us to calculate potentials and distances (between the binding ion and the oxygen ions of the glutamate side chains) directly from the experimental data using algebraic formulas. The spatial resolution of these results is comparable with those of molecular models, but of course the accuracy is no better than that implied by the experimental data. The glutamate side chains in our model are flexible enough to accommodate different types of binding ions in different bath conditions. The binding curves of Na(+) and Ca(2+) for [CaCl2] ranging from 10(-8) to 10(-2) M with a fixed 32 mM background [NaCl] are shown to agree with published Monte Carlo simulations. The Poisson-Fermi differential equation-that includes both steric and correlation effects-is then used to obtain the spatial profiles of energy, concentration, and dielectric coefficient from the solvent region to the filter. The energy profiles of ions are shown to depend sensitively on the steric energy that is not taken into account in the classical rate theory. We improve the rate theory by introducing a steric energy that lumps the effects of excluded volumes of all ions and water molecules and empty spaces between particles created by Lennard-Jones type and electrostatic forces. We show that the energy landscape varies significantly with bath concentrations. The energy landscape is not constant.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Modelos Moleculares , Sitios de Unión , Canales de Calcio/química , Distribución de Poisson , Unión Proteica , Conformación Proteica
7.
J Chem Phys ; 141(22): 22D532, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25494803

RESUMEN

A Poisson-Nernst-Planck-Fermi (PNPF) theory is developed for studying ionic transport through biological ion channels. Our goal is to deal with the finite size of particle using a Fermi like distribution without calculating the forces between the particles, because they are both expensive and tricky to compute. We include the steric effect of ions and water molecules with nonuniform sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of water molecules in an inhomogeneous aqueous electrolyte. Including the finite volume of water and the voids between particles is an important new part of the theory presented here. Fermi like distributions of all particle species are derived from the volume exclusion of classical particles. Volume exclusion and the resulting saturation phenomena are especially important to describe the binding and permeation mechanisms of ions in a narrow channel pore. The Gibbs free energy of the Fermi distribution reduces to that of a Boltzmann distribution when these effects are not considered. The classical Gibbs entropy is extended to a new entropy form - called Gibbs-Fermi entropy - that describes mixing configurations of all finite size particles and voids in a thermodynamic system where microstates do not have equal probabilities. The PNPF model describes the dynamic flow of ions, water molecules, as well as voids with electric fields and protein charges. The model also provides a quantitative mean-field description of the charge/space competition mechanism of particles within the highly charged and crowded channel pore. The PNPF results are in good accord with experimental currents recorded in a 10(8)-fold range of Ca(2+) concentrations. The results illustrate the anomalous mole fraction effect, a signature of L-type calcium channels. Moreover, numerical results concerning water density, dielectric permittivity, void volume, and steric energy provide useful details to study a variety of physical mechanisms ranging from binding, to permeation, blocking, flexibility, and charge/space competition of the channel.


Asunto(s)
Canales de Calcio/metabolismo , Modelos Biológicos , Algoritmos , Calcio/metabolismo , Simulación por Computador , Entropía , Transporte Iónico , Sodio/metabolismo , Electricidad Estática , Agua/metabolismo
8.
Biophys J ; 104(9): 1849-66, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23663828

RESUMEN

Ions in water are important throughout biology, from molecules to organs. Classically, ions in water were treated as ideal noninteracting particles in a perfect gas. Excess free energy of each ion was zero. Mathematics was not available to deal consistently with flows, or interactions with other ions or boundaries. Nonclassical approaches are needed because ions in biological conditions flow and interact. The concentration gradient of one ion can drive the flow of another, even in a bulk solution. A variational multiscale approach is needed to deal with interactions and flow. The recently developed energetic variational approach to dissipative systems allows mathematically consistent treatment of the bio-ions Na(+), K(+), Ca(2+), and Cl(-) as they interact and flow. Interactions produce large excess free energy that dominate the properties of the high concentration of ions in and near protein active sites, ion channels, and nucleic acids: the number density of ions is often >10 M. Ions in such crowded quarters interact strongly with each other as well as with the surrounding protein. Nonideal behavior found in many experiments has classically been ascribed to allosteric interactions mediated by the protein and its conformation changes. The ion-ion interactions present in crowded solutions-independent of conformation changes of the protein-are likely to change the interpretation of many allosteric phenomena. Computation of all atoms is a popular alternative to the multiscale approach. Such computations involve formidable challenges. Biological systems exist on very different scales from atomic motion. Biological systems exist in ionic mixtures (like extracellular and intracellular solutions), and usually involve flow and trace concentrations of messenger ions (e.g., 10(-7) M Ca(2+)). Energetic variational methods can deal with these characteristic properties of biological systems as we await the maturation and calibration of all-atom simulations of ionic mixtures and divalents.


Asunto(s)
Cationes/metabolismo , Cloruros/metabolismo , Animales , Humanos , Canales Iónicos/metabolismo , Transporte Iónico
9.
Biophys J ; 114(2): 256-258, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29401424
10.
J Comput Chem ; 34(24): 2065-78, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23740647

RESUMEN

A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can effectively lead to reduced current in the channel, and the results are closer to BD simulation results.


Asunto(s)
Brevibacillus/metabolismo , Simulación por Computador , Gramicidina/metabolismo , Canales Iónicos/metabolismo , Modelos Biológicos , Brevibacillus/química , Gramicidina/química , Canales Iónicos/química , Transporte Iónico , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Programas Informáticos
11.
Eur Biophys J ; 41(5): 449-60, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22484856

RESUMEN

Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å(3). The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.


Asunto(s)
Dominio Catalítico , Enzimas/química , Enzimas/metabolismo , Canales de Calcio/química , Canales de Calcio/metabolismo , Biología Computacional , Concentración de Iones de Hidrógeno , Líquidos Iónicos/química , Canales de Sodio/química , Canales de Sodio/metabolismo , Electricidad Estática
12.
Eur Biophys J ; 41(3): 259-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22246445

RESUMEN

NanC is an Escherichia coli outer membrane protein involved in sialic acid (Neu5Ac, i.e., N-acetylneuraminic acid) uptake. Expression of the NanC gene is induced and controlled by Neu5Ac. The transport mechanism of Neu5Ac is not known. The structure of NanC was recently solved (PDB code: 2WJQ) and includes a unique arrangement of positively charged (basic) side chains consistent with a role in acidic sugar transport. However, initial functional measurements of NanC failed to find its role in the transport of sialic acids, perhaps because of the ionic conditions used in the experiments. We show here that the ionic conditions generally preferred for measuring the function of outer-membrane porins are not appropriate for NanC. Single channels of NanC at pH 7.0 have: (1) conductance 100 pS to 800 pS in 100 mM: KCl to 3 M: KCl), (2) anion over cation selectivity (V (reversal) = +16 mV in 250 mM: KCl || 1 M: KCl), and (3) two forms of voltage-dependent gating (channel closures above ± 200 mV). Single-channel conductance decreases by 50% when HEPES concentration is increased from 100 µM: to 100 mM: in 250 mM: KCl at pH 7.4, consistent with the two HEPES binding sites observed in the crystal structure. Studying alternative buffers, we find that phosphate interferes with the channel conductance. Single-channel conductance decreases by 19% when phosphate concentration is increased from 0 mM: to 5 mM: in 250 mM: KCl at pH 8.0. Surprisingly, TRIS in the baths reacts with Ag|AgCl electrodes, producing artifacts even when the electrodes are on the far side of agar-KCl bridges. A suitable baseline solution for NanC is 250 mM: KCl adjusted to pH 7.0 without buffer.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Ácido N-Acetilneuramínico/farmacología , Porinas/metabolismo , Transporte Biológico , Tampones (Química) , Relación Dosis-Respuesta a Droga , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Cloruro de Potasio/farmacología
13.
Phys Biol ; 8(2): 026004, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21263167

RESUMEN

The role of flexibility in the selectivity of calcium channels is studied using a simple model with two parameters that accounts for the selectivity of calcium (and sodium) channels in many ionic solutions of different compositions and concentrations using two parameters with unchanging values. We compare the distribution of side chains (oxygens) and cations (Na(+) and Ca(2+)) and integrated quantities. We compare the occupancies of cations Ca(2+)/Na(+) and linearized conductance of Na(+). The distributions show a strong dependence on the locations of fixed side chains and the flexibility of the side chains. Holding the side chains fixed at certain predetermined locations in the selectivity filter distorts the distribution of Ca(2+) and Na(+) in the selectivity filter. However, integrated quantities-occupancy and normalized conductance-are much less sensitive. Our results show that some flexibility of side chains is necessary to avoid obstruction of the ionic pathway by oxygen ions in 'unfortunate' fixed positions. When oxygen ions are mobile, they adjust 'automatically' and move 'out of the way', so they can accommodate the permeable cations in the selectivity filter. Structure is the computed consequence of the forces in this model. The structures are self-organized, at their free energy minimum. The relationship of ions and side chains varies with an ionic solution. Monte Carlo simulations are particularly well suited to compute induced-fit, self-organized structures because the simulations yield an ensemble of structures near their free energy minimum. The exact location and mobility of oxygen ions has little effect on the selectivity behavior of calcium channels. Seemingly, nature has chosen a robust mechanism to control selectivity in calcium channels: the first-order determinant of selectivity is the density of charge in the selectivity filter. The density is determined by filter volume along with the charge and excluded volume of structural ions confined within it. Flexibility seems a second-order determinant. These results justify our original assumption that the important factor in Ca(2+) versus Na(+) selectivity is the density of oxygen ions in the selectivity filter along with (charge) polarization (i.e. dielectric properties). The assumption of maximum mobility of oxygens seems to be an excellent approximate working hypothesis in the absence of exact structural information. These conclusions, of course, apply to what we study here. Flexibility and fine structural details may have an important role in other properties of calcium channels that are not studied in this paper. They surely have important roles in other channels, enzymes, and proteins.


Asunto(s)
Canales de Calcio , Modelos Biológicos , Iones/metabolismo , Permeabilidad , Soluciones/química , Especificidad por Sustrato
14.
Eur Biophys J ; 40(6): 775-82, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21380773

RESUMEN

The energetics that give rise to selectivity sequences of ionic binding selectivity of Li(+), Na(+), K(+), Rb(+), and Cs(+) in a model of a calcium channel are considered. This work generalizes Eisenman's classic treatment (Biophys J 2(Suppl. 2):259, 1962) by including multiple, mobile binding site oxygens that coordinate many permeating ions (all modeled as charged, hard spheres). The selectivity filter of the model calcium channel allows the carboxyl terminal groups of glutamate and aspartate side chains to directly interact with and coordinate the permeating ions. Ion dehydration effects are represented with a Born energy between the dielectric coefficients of the selectivity filter and the bath. High oxygen concentration creates a high field strength site that prefers small ions, as in Eisenman's model. On the other hand, a low filter dielectric constant also creates a high field strength site, but this site prefers large ions, contrary to Eisenman's model. These results indicate that field strength does not have a unique effect on ionic binding selectivity sequences once entropic, electrostatic, and dehydration forces are included in the model. Thus, Eisenman's classic relationship between field strength and selectivity sequences must be supplemented with additional information about selectivity filters such as the calcium channel that has amino acid side chains mixing with ions to make a crowded permeation pathway.


Asunto(s)
Canales de Calcio/metabolismo , Modelos Biológicos , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sitios de Unión , Canales de Calcio/química , Cationes/clasificación , Cationes/metabolismo , Electroquímica , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Activación del Canal Iónico , Oxígeno/metabolismo , Permeabilidad , Electricidad Estática , Termodinámica
15.
J Chem Phys ; 135(6): 064105, 2011 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-21842924

RESUMEN

In the implicit solvent models of electrolytes (such as the primitive model (PM)), the ions are modeled as point charges in the centers of spheres (hard spheres in the case of the PM). The surfaces of the spheres are not polarizable which makes these models appropriate to use in computer simulations of electrolyte systems where these ions do not leave their host dielectrics. The same assumption makes them inappropriate in simulations where these ions cross dielectric boundaries because the interaction energy of the point charge with the polarization charge induced on the dielectric boundary diverges. In this paper, we propose a procedure to treat the passage of such ions through dielectric interfaces with an interpolation method. Inspired by the "bubble ion" model (in which the ion's surface is polarizable), we define a space-dependent effective dielectric coefficient, ε(eff)(r), for the ion that overlaps with the dielectric boundary. Then, we replace the "bubble ion" with a point charge that has an effective charge q/ε(eff)(r) and remove the portion of the dielectric boundary where the ion overlaps with it. We implement the interpolation procedure using the induced charge computation method [D. Boda, D. Gillespie, W. Nonner, D. Henderson, and B. Eisenberg, Phys. Rev. E 69, 046702 (2004)]. We analyze the various energy terms using a spherical ion passing through an infinite flat dielectric boundary as an example.


Asunto(s)
Iones/química , Modelos Moleculares , Electricidad Estática , Simulación por Computador , Métodos
16.
J Chem Phys ; 134(5): 055102, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21303162

RESUMEN

The selectivity filter of the L-type calcium channel works as a Ca(2+) binding site with a very large affinity for Ca(2+) versus Na(+). Ca(2+) replaces half of the Na(+) ions in the filter even when these ions are present in 1 µM and 30 mM concentrations in the bath, respectively. The energetics of this strong selectivity is analyzed in this paper. We use Widom's particle insertion method to compute the space-dependent profiles of excess chemical potential in our grand canonical Monte Carlo simulations. These profiles define the free-energy landscape for the various ions. Following Gillespie [Biophys. J. 94, 1169 (2008)], the difference of the excess chemical potentials for the two competing ions defines the advantage that one of the ions has over the other in the competition for space in the crowded selectivity filter. These advantages depend on ionic bath concentrations: the ion that is present in the bath in larger quantity (Na(+)) has the "number" advantage which is balanced by the free-energy advantage of the other ion (Ca(2+)). The excess chemical potentials are decomposed into hard sphere exclusion and electrostatic components. The electrostatic terms correspond to interactions with the mean electric field produced by ions and induced charges as well to ionic correlations beyond the mean field description. Dielectrics are needed to produce micromolar Ca(2+) versus Na(+) selectivity in the L-type channel. We study the behavior of these terms with changes in bath concentrations of ions, charges, and diameters of ions, as well as geometrical parameters such as radius of the pore and the dielectric constant of the protein. Ion selectivity in calcium binding proteins probably has a similar mechanism.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Sitios de Unión , Canales de Calcio Tipo L/química , Simulación por Computador , Modelos Biológicos , Unión Proteica , Sodio/metabolismo , Termodinámica
17.
Biochim Biophys Acta ; 1788(12): 2471-80, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19818330

RESUMEN

Calcium channels have highly charged selectivity filters (4 COO(-) groups) that attract cations in to balance this charge and minimize free energy, forcing the cations (Na(+) and Ca(2+)) to compete for space in the filter. A reduced model was developed to better understand the mechanism of ion selectivity in calcium channels. The charge/space competition (CSC) mechanism implies that Ca(2+) is more efficient in balancing the charge of the filter because it provides twice the charge as Na(+) while occupying the same space. The CSC mechanism further implies that the main determinant of Ca(2+) versus Na(+) selectivity is the density of charged particles in the selectivity filter, i.e., the volume of the filter (after fixing the number of charged groups in the filter). In this paper we test this hypothesis by changing filter length and/or radius (shape) of the cylindrical selectivity filter of our reduced model. We show that varying volume and shape together has substantially stronger effects than varying shape alone with volume fixed. Our simulations show the importance of depletion zones of ions in determining channel conductance calculated with the integrated Nernst-Planck equation. We show that confining the protein side chains with soft or hard walls does not influence selectivity.


Asunto(s)
Canales de Calcio Tipo L/química , Calcio/química , Modelos Químicos , Sodio/química , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Humanos , Transporte Iónico/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína/fisiología , Sodio/metabolismo , Relación Estructura-Actividad
18.
J Chem Phys ; 133(10): 104104, 2010 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-20849161

RESUMEN

Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton's least action and Rayleigh's dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an "extra layer" of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler-Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components. If a new component is added to the energy or dissipation, the Euler-Lagrange equations change form and interaction terms appear without additional adjustable parameters. EnVarA has previously been used to compute properties of liquid crystals, polymer fluids, and electrorheological fluids containing solid balls and charged oil droplets that fission and fuse. Here we apply EnVarA to the primitive model of electrolytes in which ions are spheres in a frictional dielectric. The resulting Euler-Lagrange equations include electrostatics and diffusion and friction. They are a time dependent generalization of the Poisson-Nernst-Planck equations of semiconductors, electrochemistry, and molecular biophysics. They include the finite diameter of ions. The EnVarA treatment is applied to ions next to a charged wall, where layering is observed. Applied to an ion channel, EnVarA calculates a quick transient pile-up of electric charge, transient and steady flow through the channel, stationary "binding" in the channel, and the eventual accumulation of salts in "unstirred layers" near channels. EnVarA treats electrolytes in a unified way as complex rather than simple fluids. Ad hoc descriptions of interactions and flow have been used in many areas of science to deal with the nonideal properties of electrolytes. It seems likely that the variational treatment can simplify, unify, and perhaps derive and improve those descriptions.


Asunto(s)
Simulación por Computador , Canales Iónicos/química , Teoría Cuántica , Termodinámica , Agua/análisis , Iones/análisis
19.
Phys Rev E ; 102(6-1): 062147, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33465972

RESUMEN

We extend the energetic variational approach so it can be applied to a chemical reaction system with general mass action kinetics. Our approach starts with an energy-dissipation law. We show that the chemical equilibrium is determined by the choice of the free energy and the dynamics of the chemical reaction is determined by the choice of the dissipation. This approach enables us to couple chemical reactions with other effects, such as diffusion and drift in an electric field. As an illustration, we apply our approach to a nonequilibrium reaction-diffusion system in a specific but canonical setup. We show by numerical simulations that the input-output relation of such a system depends on the choice of the dissipation.

20.
Biophys J ; 96(4): 1293-306, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19217848

RESUMEN

Proteins can be influenced strongly by the electrolyte in which they are dissolved, and we wish to model, understand, and ultimately control such ionic effects. Relatively detailed Monte Carlo (MC) ion simulations are needed to capture biologically important properties of ion channels, but a simpler treatment of ions, the linearized Poisson-Boltzmann (LPB) theory, is often used to model processes such as binding and folding, even in settings where the LPB theory is expected to be inaccurate. This study uses MC simulations to assess the reliability of the LPB theory for such a system, the constrained, anionic active site of HIV protease. We study the distributions of ions in and around the active site, as well as the energetics of displacing ions when a protease inhibitor is inserted into the active site. The LPB theory substantially underestimates the density of counterions in the active site when divalent cations are present. It also underestimates the energy cost of displacing these counterions, but the error is not consequential because the energy cost is less than kBT, according to the MC calculations. Thus, the LPB approach will often be suitable for studying energetics, but the more detailed MC approach is critical when ionic distributions and fluxes are at issue.


Asunto(s)
Dominio Catalítico , Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/química , Iones/química , Oligopéptidos/química , Algoritmos , Sitios de Unión , Simulación por Computador , Proteasa del VIH/metabolismo , Modelos Químicos , Modelos Moleculares , Método de Montecarlo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA