Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Toxicol Appl Pharmacol ; 454: 116254, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36155770

RESUMEN

BACKGROUND: Early post-stroke seizure frequently occurs in stroke survivors within the first few days and is associated with poor functional outcomes. Therefore, efficient treatments of such complications with less adverse effects are pivotal. In this study, we investigated the possible beneficial effects of lasmiditan and sumatriptan against post-stroke seizures in mice and explored underlying mechanisms in their effects. METHODS: Stroke was induced by double ligation of the right common carotid artery in mice. Immediately after the ligation, lasmiditan (0.1 mg/kg, intraperitoneally [i.p.]) or sumatriptan (0.03 mg/kg, i.p.) were administered. Twenty-four hours after the stroke induction, seizure susceptibility was evaluated using the pentylenetetrazole (PTZ)-induced clonic seizure model. In separate experiments, naltrexone (a non-specific opioid receptor antagonist) and glibenclamide (a KATP channel blocker) were administered 15 min before lasmiditan or sumatriptan injection. To evaluate the underlying signaling pathways, ELISA analysis of inflammatory cytokines (TNF-α and IL-1ß) and western blot analysis of anti- and pro-apoptotic markers (Bcl-2 and Bax) were performed on mice isolated brain tissues. RESULTS: Lasmiditan (0.1 mg/kg, i.p.) and sumatriptan (0.03 mg/kg, i.p.) remarkably decreased seizure susceptibility in stroke animals by reducing inflammatory cytokines and neuronal apoptosis. Concurrent administration of naltrexone (10 mg/kg, i.p.) or glibenclamide (0.3 mg/kg, i.p.) with lasmiditan or sumatriptan resulted in a higher neuroprotection against clonic seizures and efficiently reduced the inflammatory and apoptotic markers. CONCLUSION: Lasmiditan and sumatriptan significantly increased post-stroke seizure thresholds in mice by suppressing inflammatory cytokines and neuronal apoptosis. Lasmiditan and sumatriptan seem to exert higher effects on seizure threshold with concurrent administration of the opioid receptors or KATP channels modulators.


Asunto(s)
Fármacos Neuroprotectores , Accidente Cerebrovascular , Adenosina Trifosfato , Animales , Anticonvulsivantes/farmacología , Benzamidas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Gliburida/farmacología , Gliburida/uso terapéutico , Ratones , Modelos Teóricos , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Pentilenotetrazol , Piperidinas , Bloqueadores de los Canales de Potasio , Canales de Potasio/metabolismo , Piridinas , Receptores Opioides , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Convulsiones/prevención & control , Accidente Cerebrovascular/tratamiento farmacológico , Sumatriptán , Factor de Necrosis Tumoral alfa , Proteína X Asociada a bcl-2
2.
J Appl Biomed ; 19(1): 48-56, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-34907715

RESUMEN

AIMS: Diabetic neuropathy has been identified as a common complication caused by diabetes. However, its pathophysiological mechanisms are not fully understood yet. Statins, also known as HMG-CoA reductase inhibitors, alleviate the production of cholesterol. Despite this cholesterol-reducing effect of statins, several reports have demonstrated their beneficial properties in neuropathic pain. In this study, we used streptozotocin (STZ)-induced diabetic model to investigate the possible role of nitric oxide (NO) in the antineuropathic-like effect of atorvastatin. METHODS: Diabetes was induced by a single injection of STZ. Male rats orally received different doses of atorvastatin for 21 days. To access the neuropathy process, the thermal threshold of rats was assessed using hot plate and tail-flick tests. Moreover, sciatic motor nerve conduction velocity (MNCV) studies were performed. To assess the role of nitric oxide, N(G)-nitro-L-arginine methyl ester (L-NAME), aminoguanidine (AG), and 7-nitroindazole (7NI) were intraperitoneally administered along with some specific doses of atorvastatin. KEY FINDINGS: Atorvastatin significantly reduced the hyperalgesia in diabetic rats. L-NAME pretreatment with atorvastatin showed the antihyperalgesic effect, suggesting the possible involvement of the NO pathway in atorvastatin protective action. Furthermore, co-administration of atorvastatin with AG and 7NI resulted in a significant increase in pain threshold in diabetic rats. SIGNIFICANCE: Our results reveal that the atorvastatin protective effect on diabetic neuropathy is mediated at least in a part via the nitric oxide system.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Atorvastatina/farmacología , Diabetes Mellitus Experimental/complicaciones , Neuropatías Diabéticas/tratamiento farmacológico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Nocicepción , Ratas , Estreptozocina
3.
Epilepsy Behav ; 112: 107343, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32755816

RESUMEN

N-methyl-d-aspartate receptor (NMDA-R)/nitric oxide (NO) pathway is involved in the intensification of the analgesic effect of opioids and the reduction of the intensity of opioids tolerance and dependence. In the current study, we investigated the involvement of NMDA-R/NO pathway in chronic morphine-treated mice in both the development of tolerance to the analgesic effect of morphine and in pentylenetetrazole (PTZ)-induced seizure threshold. Chronic treatment with morphine (30 mg/kg) exhibited increased seizure resistance in morphine-induced tolerant mice. The development of morphine tolerance was withdrawn when used concomitantly with NOS inhibitors and NMDA-R antagonist, suggesting that the development of tolerance to the anticonvulsant effect of morphine (30 mg/kg) is mediated through the NMDA-R/NO pathway. A dose-dependent biphasic seizure modulation of morphine was demonstrated in the acute treatment with morphine; acute treatment at a dose of 0.5 mg/kg shows the anticonvulsant effect and at a dose of 30 mg/kg shows proconvulsant effect. However, a different pattern was observed in the mice treated chronically with morphine: they demonstrated tolerance in the tail-flick test; five consecutive days of chronic treatment with a high dose of morphine (30 mg/kg) showed anticonvulsant effect while a low dose of morphine (0.5 mg/kg) showed a proconvulsant effect. The anticonvulsant effect of morphine was inhibited completely by the concomitant administration of NO synthase (NOS) inhibitors including nonspecific NOS inhibitor (L-NAME, 10 mg/kg), inducible NOS inhibitor (aminoguanidine, 50 mg/kg), and neuronal NOS inhibitor (7-nitroindazole (7-NI), 15 mg/kg) for five consecutive days. Besides, five days injection of NMDA-R antagonist (MK-801, 0.05 mg/kg) significantly inhibited the anticonvulsant effect of morphine on the PTZ-induced clonic seizures. The results revealed that chronic treatment with morphine leads to the development of tolerance in mice, which in turn may cause an anticonvulsant effect in a high dose of morphine via the NMDA-R/NO pathway.


Asunto(s)
Pentilenotetrazol , Receptores de N-Metil-D-Aspartato , Animales , Anticonvulsivantes/uso terapéutico , Relación Dosis-Respuesta a Droga , Ratones , Morfina/uso terapéutico , N-Metilaspartato/uso terapéutico , N-Metilaspartato/toxicidad , NG-Nitroarginina Metil Éster , Óxido Nítrico/metabolismo , Pentilenotetrazol/toxicidad , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
4.
J Microencapsul ; 34(2): 195-202, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28378606

RESUMEN

AIM: Nanoemulsion has shown many advantages in drug delivery systems. In this study, for the first time, analgesic and anti-inflammatory properties of a nanomelusion of almond oil with and without ibuprofen was compared with corresponding microemulsion and commercial topical gel of the drug using formalin and carrageenan tests, respectively. METHOD: Almond oil (oil phase) was mixed with Tween 80 and Span 80 (surfactants), and ethanol (co-surfactant) and them distilled water (aqueous phase) was then added to the mixture at once. Prepared nanoemulsions were pre-emulsified into a 100 ml beaker using magnet/stirrer (1000 rpm). Then, using a probe ultrasonicator (Hielscher UP400s, Hielscher, Ringwood, NJ) the nanoemulsions were formed. RESULTS: The optimised nanoemulsion formulation containing 2.5% ibuprofen, showed improved analgesic and anti-inflammatory effects compared with commercial product and corresponding microemulsion product containing 5% ibuprofen (i.e. twice the content of ibuprofen in the nanoemulsion) in vivo. The nanoemulsion preparation showed superior analgesic activities during chronic phase. Also, it decreased the inflammation from the first hour, while the microemulsion and the commercial product started to show their anti-inflammatory effects after 2 and 3 h, respectively. CONCLUSION: Our finding suggests that the size of the emulsion particles must be considered as an important factor in topical drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Emulsiones/química , Geles/química , Ibuprofeno/administración & dosificación , Nanopartículas/química , Aceites de Plantas , Polisorbatos , Tensoactivos
5.
Can J Physiol Pharmacol ; 93(6): 475-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25978623

RESUMEN

Cirrhosis is associated with vascular dysfunction and endotoxemia. These experiments were designed to investigate the hypothesis that the administration of a low-dose of lipopolysaccharide (LPS) worsens vascular dysfunction in rats subjected to bile-duct ligation (BDL), and to determine whether LPS initiates changes in vascular Toll-like receptor 4 (TLR4) expression. Four weeks after BDL, the animals were given an intraperitoneal injection of either saline or LPS (1.0 mg/kg body mass). Three hours later, the superior mesenteric artery was isolated, perfused, and then subjected to the vasoconstriction and vasodilatation effects of phenylephrine and acetylcholine, respectively. Our results show that phenylephrine-induced vasoconstriction decreased in the cirrhotic vascular bed (BDL rats) compared with the vascular bed of the sham-operated animals, and that the LPS injections in the cirrhotic (BDL) rats worsened this response. LPS injection administered to the sham-operated animals had no such effect. On the other hand, both the BDL procedure and the LPS injection increased acetylcholine-induced vasorelaxation, but LPS administration to the BDL rats had no effect on this response. The mRNA levels of TLR4 did not change, but immunohistochemical studies showed that TLR4 localization switched from the endothelium to vascular smooth muscle cells following chronic BDL. In conclusion, acute endotoxemia in cirrhotic rats is associated with hyporesponsiveness to phenylephrine and tolerance to the effects of acetylcholine. Altered localization of TLR4 may be responsible for these effects.


Asunto(s)
Acetilcolina/farmacología , Endotoxinas/farmacología , Cirrosis Hepática Experimental/inducido químicamente , Arterias Mesentéricas/efectos de los fármacos , Fenilefrina/farmacología , Receptor Toll-Like 4/metabolismo , Animales , Conductos Biliares/efectos de los fármacos , Conductos Biliares/metabolismo , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Endotoxemia/metabolismo , Ligadura/métodos , Lipopolisacáridos/farmacología , Cirrosis Hepática Experimental/metabolismo , Masculino , Arterias Mesentéricas/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Ratas , Ratas Wistar , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
6.
J Surg Res ; 192(2): 686-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25135123

RESUMEN

BACKGROUND: Metformin has shown cardioprotective effects in experimental models of ischemia reperfusion, which is partially mediated through nitric oxide (NO) synthesis. We investigated the effects of metformin pretreatment in a rat model of random-pattern skin flap, and the probable role of NO system. MATERIALS AND METHODS: In the first experiment, the rats received increasing doses of metformin (150, 200, and 300 mg/kg), 4 h before the procedure. Dorsal skin flaps with caudal pedicles were elevated at the midline and flap survival was measured 7 d after surgery. Pathologic review of the skin flap specimen was performed in a subset of animals. In the second experiment, for evaluation of the role of NO, an NO synthase inhibitor N-nitro-L-arginine methyl ester hydrochloride (L-NAME) was administered with and without the effective dose of metformin. In the next experiment, subtherapeutic dose of NO precursor, L-Arginine, was administered with and without subeffective dose of metformin. RESULTS: Metformin pretreatment at doses of 200 and 300 mg/kg significantly increased skin flap survival rate. However, administration of L-NAME abolished the protective effects of metformin. On the other hand, subtherapeutic dose of L-arginine augmented the effects of low-dose metformin and significantly increased skin flap survival. Skin flaps from those rats that received 300 mg/kg metformin pretreatment and those treated with subtherapeutic doses of L-arginine and metformin showed increased vasodilation compared with control group. CONCLUSIONS: Metformin pretreatment can improve skin flap survival through an NO dependent pathway.


Asunto(s)
Precondicionamiento Isquémico/métodos , Metformina/farmacología , Óxido Nítrico/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Colgajos Quirúrgicos/irrigación sanguínea , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Supervivencia de Injerto/efectos de los fármacos , Hipoglucemiantes/farmacología , Masculino , Ratas Sprague-Dawley , Procedimientos de Cirugía Plástica/métodos , Piel/irrigación sanguínea , Piel/patología , Colgajos Quirúrgicos/patología
7.
Pharm Dev Technol ; 19(5): 593-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23859703

RESUMEN

Chitosan (CS) nanoparticles have been extensively studied as carriers for therapeutic proteins in recent years. In this study, streptokinase loaded-CS nanoparticles were prepared and the pharmacokinetic parameters of streptokinase were compared with those of naked streptokinase. The preparation method included stirring the protein with the CS solution. The optimized combination was used for animal experiments to determine the streptokinase activity in rat plasma. Blood samples were collected at specified intervals and the activity assay was performed based on amidolysis activity of the chromogenic substrate, S2251, by streptokinase-plasminogen activator complex. The results demonstrated that streptokinase-loaded CS nanoparticles have more prolonged amidolytic activity in vivo compared to the naked one.


Asunto(s)
Quitosano/química , Preparaciones de Acción Retardada/química , Fibrinolíticos/administración & dosificación , Nanopartículas/química , Estreptoquinasa/administración & dosificación , Animales , Fibrinolíticos/sangre , Masculino , Ratas , Ratas Wistar , Electricidad Estática , Estreptoquinasa/sangre
8.
Eur J Pharmacol ; : 177025, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395583

RESUMEN

Inhibition of COX and LOX could contribute to memory formation and prevention of neurodegeneration, by alleviation of neuroinflammation and improvement of mitochondrial homeostasis. We aimed to assess the effect of licofelone, a dual COX and 5-LOX inhibitor on memory formation, neural apoptosis, neural regeneration, and mitophagy in acute and chronic dosages, given that licofelone could regulate nitric oxide levels. Y-maze and Passive Avoidance tests were used to evaluate memory function in NMRI mice using the EthoVision setting, following scopolamine administration (1 mg/kg, i.p.) as an acute amnestic drug. Hippocampi were used to evaluate the levels of apoptosis via TUNEL assay, neural regeneration via immunohistochemistry method detecting doublecortin and nestin, and mitophagy via western blot of mitophagy proteins Parkin and ATG5. While acute high-dose licofelone (20 mg/kg) could reverse amnestic effects of scopolamine in passive avoidance test (p=0.0001), Chronic licofelone (10 mg/kg for 10 consecutive days) could improve performance in Y-maze (p=0.0007). Molecular analysis revealed that the chronic form of the drug could enhance neural regeneration in CA1 and SGZ regions, reset mitophagy levels as much as the healthy state, and reduce apoptosis rate. Licofelone appears to show a desirable anti-amnestic profile in a low dose chronically; it is hence recommended for future clinical studies on the prevention of neuroinflammation and memory deficit.

9.
Eur J Clin Invest ; 43(10): 1039-51, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23937291

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder featured by deposition of beta-amyloid (Aß) plaques in the hippocampus and associated cortices and progressive cognitive decline. Tropisetron, a selective 5-HT3 receptor antagonist, is conventionally used to counteract chemotherapy-induced emesis. Recent investigations describe antiphlogistic properties for tropisetron. It has been shown that tropisetron protects against rat embolic stroke. We investigated protective properties of tropisetron in a beta-amyloid (Aß) rat model of AD and possible involvement of 5-HT3 receptors. MATERIAL AND METHODS: Aß (1-42) was injected into the hippocampus of male rats. Animals were treated intracerebroventricularly with tropisetron, mCPBG (selective 5-HT3 receptor agonist) or mCPBG plus tropisetron on days 1, 3, 5 and 7. Seven days following Aß administration, inflammatory markers (TNF-α, COX-2, iNOS and NF-κB), apoptotic markers (caspase 3 cytochrome c release) and calcineurin phosphatase activity were assessed in hippocampus. RESULTS: Seven days following Aß inoculation, control animals displayed dramatic increase in TNF-α, COX-2, iNOS, NF-κB, active caspase 3, cytochrome c release and calcineurin phosphatase activity in the hippocampus. Tropisetron significantly diminished the elevated levels of these markers and reversed the cognitive deficit. Interestingly, tropisetron was also found to be a potent inhibitor of calcineurin phosphatase activity. The selective 5-HT3 receptor agonist mCPBG, when co-administered with tropisetron, completely reversed the procognitive and anti-apoptotic properties of tropisetron while it could only partially counteract the anti-inflammatory effects. mCPBG alone significantly aggravated Aß-induced injury. CONCLUSION: Our findings indicate that tropisetron protects against Aß-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and independent pathways.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Indoles/farmacología , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Péptidos beta-Amiloides/toxicidad , Animales , Calcineurina/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Citocromos c/metabolismo , Encefalitis/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nitritos/metabolismo , Ratas , Ratas Wistar , Tropisetrón , Factor de Necrosis Tumoral alfa/metabolismo
10.
Heliyon ; 8(11): e11375, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36387449

RESUMEN

Introduction: Ivermectin (IVM) is an antiparasitic medicine that exerts its function through glutamate-gated chloride channels and GABAA receptors predominantly. There is paucity of information on anti-seizure activity of IVM. Moreover, the probable pharmacological mechanisms underlying this phenomenon have not been identified. Materials and methods: In this study, pentylenetetrazole (PTZ)-induced clonic seizures and maximal electroshock (MES)-induced tonic-clonic seizure models, respectively in mice was utilized to inquire whether IVM could alter clonic seizure threshold (CST) and seizure susceptibility. To assess the underlying mechanism behind the anti-seizure activity of IVM, we used positive and negative allosteric modulators of GABAA (diazepam and flumazenil, respectively) as well as KATP channel opener and closer (cromakalim and glibenclamide, respectively). Data are provided as mean ± S.E.M. After the performance of the variance homogeneity test, a one-way and two-way analysis of variance was used. Fisher's exact test was performed in case of MES. P-value less than 0.05 considered statistically significant. Results: and Discussion: Our data showed that IVM (0.5, 1, 5, and 10 mg/kg, i.p.) increased CST. Furthermore, flumazenil 0.25 mg/kg, i.p. and glibenclamide 1 mg/kg, i.p., could inhibit the anticonvulsant effects of IVM. Supplementary, an ineffective dose of diazepam 0.02 mg/kg, i.p. or cromakalim 10 µg/kg, i.p. were able to enhance the anticonvulsant effects of IVM. Besides, we figure out that the IVM (1 and 5 mg/kg, i.p.) could delay the onset of first clonic seizure and also might decrease the frequency of clonic seizures induced by PTZ (85 mg/kg, i.p.). Finally, IVM could prevent the incidence and death in MES-induced tonic-clonic seizures. Conclusion: Based on the obtained results, it can be concluded that IVM may exert anticonvulsant effects against PTZ- and MES-induced seizures in mice that might be mediated by GABAA receptors and KATP channels.

11.
Sci Rep ; 12(1): 15963, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153399

RESUMEN

Melatonin (MT), a neurohormone with immunomodulatory properties, is one of the metabolites produced in the brain from tryptophan (TRP) that has already strong links with the neuropathogenesis of Multiple sclerosis (MS). However, the exact molecular mechanisms behind that are not fully understood. There is some evidence showing that MS and MT are interconnected via different pathways: Relapses of MS has a direct correlation with a low level of MT secretion and a growing body of evidence suggest that MT be therapeutic in Experimental Autoimmune Encephalomyelitis (EAE, a recognise animal model of MS) severity. Previous studies have demonstrated that the kynurenine pathway (KP), the main pathway of TRP catabolism, plays a key role in the pathogenesis of MS in humans and in EAE. The present study aimed to investigate whether MT can improve clinical signs in the EAE model by modulating the KP. C57BL/6 mice were induced with EAE and received different doses of MT. Then the onset and severity of EAE clinical symptoms were recorded. Two biological factors, aryl hydrocarbon receptor (AhR) and NAD+ which closely interact in the KP were also assessed. The results indicated that MT treatment at all tested doses significantly decrease the EAE clinical scores and the number of demyelinating plaques. Furthermore, MT treatment reduced the mRNA expression of the KP regulatory enzyme indoleamine 2,3-dioxygenase 1(IDO-1) and other KP enzymes. We also found that MT treatment reduces the mRNA expression of the AhR and inhibits the enzyme Nicotinamide N-Methyltransferase (Nnmt) overexpression leading to an increase in NAD+ levels. Collectively, this study suggests that MT treatment may significantly attenuates the severity of EAE by altering the KP, AhR and NAD+ metabolism.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Melatonina , Esclerosis Múltiple , Animales , Factores Biológicos/uso terapéutico , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , NAD/uso terapéutico , Nicotinamida N-Metiltransferasa , ARN Mensajero/uso terapéutico , Receptores de Hidrocarburo de Aril/genética , Índice de Severidad de la Enfermedad , Triptófano/metabolismo
12.
Peptides ; 131: 170368, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32668268

RESUMEN

BACKGROUND: previous studies have suggested that methamphetamine (METH) abuse may affect orexin regulation. However, the data regarding the relationship between the current level of orexin and the vulnerability to METH abuse are minimal. Here, we have investigated the correlation between the gene expression level of the orexin-1 receptor (OX1R) in the rat prefrontal cortex (PFC) and blood lymphocytes and susceptibility to METH dependence and its impact on novelty-seeking behavior. METHODS: male Wistar rats were first examined for novelty-seeking behavior by the novel object recognition test, and the expression level of OX1R in their blood lymphocytes was evaluated by real-time PCR. Then, the susceptibility to METH abuse was investigated by voluntary METH oral consumption test. According to the amounts of METH consumption, the animals were divided into two groups of METH preferring and non-preferring. Half of the rats in each group were sacrificed, and the level of OX1R in their blood lymphocytes and PFC tissue was measured. The other half were sacrificed for the same reason after two weeks of drug abstinence. RESULTS: The indexes of novelty-seeking behavior were significantly higher in the METH- preferring group compared to the non-preferring animals. Furthermore, the expression level of OX1R in the blood lymphocytes and PFC in the preferring group was considerably higher than the non-preferring group. CONCLUSION: Up-regulation of the mRNA expression level of OX1R in the lymphocytes and PFC may predict vulnerability to the METH consumption and novelty-seeking, which may serve as a potential biomarker for METH abuse.


Asunto(s)
Trastornos Relacionados con Anfetaminas/genética , Estimulantes del Sistema Nervioso Central/farmacología , Conducta Exploratoria/fisiología , Metanfetamina/farmacología , Receptores de Orexina/genética , Corteza Prefrontal/efectos de los fármacos , Administración Oral , Trastornos Relacionados con Anfetaminas/metabolismo , Trastornos Relacionados con Anfetaminas/fisiopatología , Animales , Estimulantes del Sistema Nervioso Central/metabolismo , Regulación de la Expresión Génica , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Metanfetamina/metabolismo , Receptores de Orexina/metabolismo , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
13.
Eur J Pharmacol ; 586(1-3): 189-96, 2008 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-18371951

RESUMEN

Cannabinoids are psychoactive compounds with many pharmacological properties such as analgesia, sedation and catalepsy most of which are mediated by cannabinoid CB1 receptors. In the present study, we evaluated whether the ovarian sex hormones are involved in the cannabinoid-induced catalepsy and analgesia in ovariectomized female mice. Female NMRI mice (weighing 25-30 g) were divided into 3 main groups: unoperated, sham-operated and ovariectomized. Both the catalepsy and analgesia induced by different doses of the synthetic cannabinoid WIN 55,212-2 (2 and 4 mg/kg, i.p.) were examined in the groups in the presence or absence of the cannabinoid CB1 antagonist AM251 (0.5 mg/kg). We also evaluated effects of estradiol valerate (10 mg/kg) and progesterone (25 mg/kg) on catalepsy and analgesia induced by WIN 55,212-2 in ovariectomized mice. The antinociceptive effect of WIN 55,212-2 was significantly (P<0.01) enhanced in ovariectomized mice, which was prevented by pretreatment with estradiol but not by progesterone. There was no significant difference in the cannabinoid-induced catalepsy between control and ovariectomized mice. However, pretreatment with progesterone but not estradiol potentiated the cataleptic effect of low dose of WIN 55,212-2 (2 mg/kg) in ovariectomized mice (P<0.01). The present data demonstrated for the first time that ovarian sex steroids could modulate both cannabinoid-induced catalepsy and analgesia in female ovariectomized mice.


Asunto(s)
Analgésicos/antagonistas & inhibidores , Analgésicos/farmacología , Cannabinoides/antagonistas & inhibidores , Cannabinoides/toxicidad , Catalepsia/inducido químicamente , Catalepsia/prevención & control , Estrógenos/farmacología , Ovariectomía , Animales , Conducta Animal/efectos de los fármacos , Benzoxazinas/farmacología , Cannabinoides/farmacología , Catalepsia/psicología , Relación Dosis-Respuesta a Droga , Estradiol/farmacología , Femenino , Calor , Ratones , Morfolinas/farmacología , Naftalenos/farmacología , Dimensión del Dolor/efectos de los fármacos , Piperidinas/farmacología , Progesterona/farmacología , Pirazoles/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-29223784

RESUMEN

Morphine dependence and the subsequent withdrawal syndrome restrict its clinical use in management of chronic pain. The precise mechanism for the development of dependence is still elusive. Thalidomide is a glutamic acid derivative, recently has been reconsidered for its clinical use due to elucidation of different clinical effects. Phosphoinositide 3-kinase (PI3K) is an intracellular transducer enzyme which activates Akt which in turns increases the level of nitric oxide. It is well established that elevated levels of nitric oxide has a pivotal role in the development of morphine dependence. In the present study, we aimed to explore the effect of thalidomide on the development of morphine dependence targeting PI3K/Akt (PKB) and nitric oxide (NO) pathways. Male NMRI mice and human glioblastoma T98G cell line were used to study the effect of thalidomide on morphine dependence. In both models the consequent effect of thalidomide on PI3K/Akt and/or NO signaling in morphine dependence was determined. Thalidomide alone or in combination with PI3K inhibitor, Akt inhibitor or nitric oxide synthase (NOS) inhibitors significantly reduced naloxone induced withdrawal signs in morphine dependent mice. Also, the levels of nitrite in hippocampus of morphine dependent mice were significantly reduced by thalidomide in compared to vehicle treated morphine dependent mice. In T98G human glioblastoma cells, thalidomide alone or in combination with PI3K and Akt inhibitors significantly reduced iNOS expression in comparison to the morphine treated cells. Also, morphine-induced p-Akt was suppressed when T98G cells were pretreated with thalidomide. Our results suggest that morphine induces Akt, which has a crucial role in the induction of NOS activity, leading to morphine dependence. Moreover, these data indicate that thalidomide attenuates the development of morphine dependence in vivo and in vitro by inhibition of PI3K/Akt and nitric oxide signaling pathways.


Asunto(s)
Fármacos del Sistema Nervioso Central/farmacología , Dependencia de Morfina/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Talidomida/farmacología , Animales , Línea Celular Tumoral , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Morfina/farmacología , Dependencia de Morfina/metabolismo , Naloxona/farmacología , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/metabolismo
15.
EXCLI J ; 17: 1137-1151, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713473

RESUMEN

Cyclosporin A (CsA) is known to have an immunosuppressive action. However, it is also attracting attention due to its effects on the nervous system, such as inhibiting the development and expression of morphine-induced tolerance and dependence through unknown mechanisms. It has been shown that CsA modulates the nitric oxide (NO) synthesis and extracellular signal-regulated kinases (ERK) activation, which are potentially involved in signaling pathways in morphine-induced tolerance in cellular models. Therefore, the current study was designed to evaluate the modulatory role of CsA on the MOR tolerance, by targeting the downstream signaling pathway of NO and ERK using an in vitro model. For this purpose, T98G cells were pretreated with CsA, calcineurin autoinhibitory peptide (CAIP), and NG-nitro-l-arginine methyl ester (L-NAME) 30 min before 18 h exposure to MOR. Then, we analyzed the intracellular cyclic adenosine monophosphate (cAMP) levels and also the expression of phosphorylated ERK and nitric oxide synthase (nNOS) proteins. Our results showed that CsA (1 nM, 10 nM, and 100 nM) and CAIP (50 µM) have significantly reduced cAMP and nitrite levels as compared to MOR-treated (2.5 µM) T98G cells. This clearly revealed the attenuation of MOR tolerance by CsA. The expression of nNOS and p-ERK proteins were down-regulated when the T98G cells were pretreated with CsA (1 nM, 10 nM, and 100 nM), CAIP (50 µM), and L-NAME (0.1 mM) as compared to MOR. In conclusion, the CsA pretreatment had a modulatory role in MOR-induced tolerance, which was possibly mediated through NO/ERK signaling pathway.

16.
Brain Res Bull ; 137: 1-9, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29102713

RESUMEN

The underlying mechanisms for the neuroprotective effects of lithium chloride in neurodegenerative diseases such as seizures remain unknown. In present study the downstream signaling pathway of phospho-ERK/NMDA receptors/nitric oxide has been studied. For this purpose, acute and chronic effect of lithium in seizure animal model and the interaction of NMDA receptor antagonist (MK-801) and neuronal nitric oxide synthase (nNOS) inhibitor (7-NI) with these neuroprotection has been studied. Acute lithium administration showed pro-convulsive properties in pentylenetetrazole (PTZ)-induced seizure model while chronic treatment increased the seizure threshold significantly. The serum level of lithium in treated mice were 0.48 mEq/L corresponding the therapeutic range. Administration of 7-NI (30mg/kg, i.p.) and MK-801 (0.001mg/kg, i.p.) had no effect on seizure threshold, while co-administration of them before the sub-effective dose of lithium (4mg/kg, i.p.) increased the anticonvulsant effect of lithium significantly. Furthermore, acute injection of MK-801 (0.05mg/kg) or 7-NI (60mg/kg) and co-administration of them significantly suppressed the anticonvulsant effect of effective dose of lithium (10mg/kg). This data demonstrated involvement of NMDA receptors/nitric oxide pathway in anticonvulsant effect of lithium. In cerebellar granule neurons (CGNs) culture studies on glutamate excitotoxicity western blot analysis, nitrite assay by Griess reaction, cell viability and microscopic morphology evaluation has been carried out to find the role of NMDA receptor/nitric oxide and phospho-ERK signaling in lithium neuroprotection. Using MTT assay and morphologic examinations, chronic lithium treatment showed protective effects against glutamate toxicity in primary cerebellar culture neurons. The level of nitric oxide was significantly reduced in co-administration of lithium and glutamate while glutamate significantly increased levels of nitric oxide. The involvement of NMDA receptors/nitric oxide and phospho-ERK pathway in the effects of lithium on cerebellar neurons has been shown. Inhibition of ERK signaling may be reconsidered as a pharmacological approach for seizure control.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Cloruro de Litio/administración & dosificación , Sistema de Señalización de MAP Quinasas/fisiología , Fármacos Neuroprotectores/administración & dosificación , Óxido Nítrico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/patología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/metabolismo , Pentilenotetrazol , Fosforilación , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Convulsiones/patología
17.
Eur J Pharmacol ; 557(1): 20-2, 2007 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-17161837

RESUMEN

Chronic cannabinoid treatment results in the development of tolerance. Adenylyl cyclase superactivation, induced by chronic cannabinoid agonist administration, is regarded as one of the molecular mechanisms leading to tolerance. In the present study, the effect of cyclosporine on adenylyl cyclase superactivation after chronic exposure to WIN 55,212-2, a cannabinoid receptor agonist, was studied. Chronic treatment (18 h) with WIN 55,212-2 induced a significant increase in cAMP levels in human astrocytoma cells (adenylyl cyclase superactivation). Acute treatment with cyclosporine (10 min) did not have any effect on WIN 55,212-2-induced adenylyl cyclase superactivation. But, chronic cyclosporine treatment (18 h), with concentration from 1 nM to 1 microM, attenuates the development of adenylyl cyclase superactivation after chronic WIN 55,212-2 treatment. Our findings show that cyclosporine attenuates chronic cannabinoid-mediated adenylyl cyclase superactivation.


Asunto(s)
Inhibidores de Adenilato Ciclasa , Cannabinoides/farmacología , Ciclosporina/farmacología , Inmunosupresores/farmacología , Morfolinas/farmacología , Naftalenos/farmacología , Adenilil Ciclasas/metabolismo , Benzoxazinas , Agonistas de Receptores de Cannabinoides , Antagonistas de Receptores de Cannabinoides , Línea Celular Tumoral , Humanos , Piperidinas/farmacología , Pirazoles/farmacología
18.
Biomed Pharmacother ; 85: 493-502, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27899254

RESUMEN

Morphine is a µ-opioid analgesic drug which is used in the treatment and management of chronic pain. However, due to development of antinociceptive tolerance its clinical use is limited. Thalidomide is an old glutamic acid derivative which recently reemerged because of its potential to counteract a number of disorders including neurodegenerative disorders. The potential underlying mechanisms and effects of thalidomide on morphine-induced antinociceptive tolerance is still elusive. Hence, the present study was designed to explore the effect of thalidomide on the development and expression of morphine antinociceptive tolerance targeting l-arginine-nitric oxide (NO) pathway in mice and T98G human glioblastoma cell line. When thalidomide was administered in a dose of 17.5mg/kg before each dose of morphine chronically for 5days it prevented the development of antinociceptive tolerance. Also, a single dose of thalidomide 20mg/kg attenuated the expression phase of antinociceptive tolerance. The protective effect of thalidomide was augmented in development phase when co-administration with NOS inhibitors like L-NAME (non- selective NOS inhibitor; 2mg/kg) or aminoguanidine (selective inducible NOS inhibitor; 50mg/kg). Also, the reversal effect of thalidomide in expression phase was potentiated when concomitantly administrated with L-NAME (5mg/kg) or aminoguanidine (100mg/kg). Co-administration of ODQ (a guanylyl cyclase inhibitor) 10mg/kg in developmental phase or 20mg/kg in expression phase also progressively increased the pain threshold. In addition, thalidomide (20µM) also significantly inhibited the overexpression of iNOS gene induced by morphine (2.5µM) in T98G cell line. Hence, our findings suggest that thalidomide has protective effect both in the development and expression phases of morphine antinociceptive tolerance. It is also evident that this effect of thalidomide is induced by the inhibition of NOS enzyme predominantly iNOS.


Asunto(s)
Arginina/metabolismo , Morfina/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Talidomida/farmacología , Animales , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Regulación de la Expresión Génica , Calor/efectos adversos , Humanos , Inmunosupresores/farmacología , Masculino , Ratones , Morfina/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/genética , Dolor/tratamiento farmacológico , Dolor/etiología , Dimensión del Dolor/métodos , Talidomida/administración & dosificación
19.
J Pharm Pharmacol ; 69(12): 1754-1761, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28836276

RESUMEN

OBJECTIVES: Alpha7 nicotinic acetylcholine receptor (α7-nAChR), an emerging pharmacological target for a variety of medical conditions, is expressed in the most mammalian tissues with different effects. So, this study was designed to investigate the expression, localization and effect of α7-nAChR in rat corpus cavernosum (CC). METHODS & KEY FINDINGS: Reverse transcription polymerase chain reaction (RT-PCR) revealed that α7-nAChR was expressed in rat CC and double immunofluorescence studies demonstrated the presence of α7-nAChR in corporal neurons. The rat CC segments were mounted in organ bath chambers and contracted with phenylephrine (0.1 µm -300 µm) to investigate the relaxation effect of electrical field stimulation (EFS,10 Hz) assessed in the presence of guanethidine (adrenergic blocker, 5 µm) and atropine (muscarinic cholinergic blocker, 1 µm) to obtain non-adrenergic non-cholinergic (NANC) response. Cumulative administration of nicotine significantly potentiated the EFS-induced NANC relaxation (-log EC50 = 7.5 ± 0.057). Whereas, the potentiated NANC relaxation of nicotine was significantly inhibited with different concentrations of methyllycaconitine citrate (α7-nAChR antagonist, P < 0.05) in preincubated strips. L-NAME (non-specific nitric oxide synthase inhibitor, 1 µm) completely blocked the neurogenic relaxation induced by EFS plus nicotine. CONCLUSION: To conclude α7-nAChR is expressed in rat CC and modulates the neurogenic relaxation response to nicotine.


Asunto(s)
Nicotina/administración & dosificación , Pene/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Aconitina/administración & dosificación , Aconitina/análogos & derivados , Aconitina/farmacología , Animales , Atropina/farmacología , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Guanetidina/farmacología , Masculino , NG-Nitroarginina Metil Éster/farmacología , Nicotina/farmacología , Fenilefrina/administración & dosificación , Fenilefrina/farmacología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Acta Med Iran ; 54(4): 240-4, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27309264

RESUMEN

Lead (Pb), has, for decades, being known for its adverse effects on various body organs and systems. In the present study, the damage of Pb on the Liver tissue apoptosis was investigated, and Lycopersicon esculentum as an antioxidants source was administered orally to prevent the adverse effects of Pb. Eighteen Wistar rats, randomized into three groups (n=6), were used for this study. Animals in Group A served as the control and were drinking distilled water. Animals in Groups B and C were drinking 1%Lead acetate (LA). Group C animals were, in addition to drinking LA, treated with 1.5 ml/day of Lycopersicon esculentum. Treatments were for three months. The obtained results showed that lead acetate caused significant reductions in the liver weight, plasma and tissue superoxide dismutase and catalase activity, but a significant increase in plasma and tissue malondialdehyde concentration but Lycopersicon esculentum have an inhibitory effect on LA liver adverse effect. So, it can be concluded that Lycopersicon esculentum have a significant protective effect on liver lead acetate adverse effects as well as, lead acetate-induced oxidative stress.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos Organometálicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Solanum lycopersicum/química , Animales , Antioxidantes/farmacología , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA