Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36674916

RESUMEN

Plants are the main source of bioactive compounds that can be used for the formulation of cosmetic products. Plant extracts have numerous proven health benefits, among which are anti-ageing and skin-care properties. However, with the increased demand for plant-derived cosmetic products, there is a crucial prerequisite for establishing alternative approaches to conventional methods to ensure sufficient biomass for sustainable production. Plant tissue culture techniques, such as in vitro root cultures, micropropagation, or callogenesis, offer the possibility to produce considerable amounts of bioactive compounds independent of external factors that may influence their production. This production can also be significantly increased with the implementation of other biotechnological approaches such as elicitation, metabolic engineering, precursor and/or nutrient feeding, immobilization, and permeabilization. This work aimed to evaluate the potential of biotechnological tools for producing bioactive compounds, with a focus on bioactive compounds with anti-ageing properties, which can be used for the development of green-label cosmeceutical products. In addition, some examples demonstrating the use of plant tissue culture techniques to produce high-value bioactive ingredients for cosmeceutical applications are also addressed, showing the importance of these tools and approaches for the sustainable production of plant-derived cosmetic products.


Asunto(s)
Antioxidantes , Cosmecéuticos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cosmecéuticos/metabolismo , Plantas/metabolismo , Biotecnología/métodos
2.
Molecules ; 27(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408473

RESUMEN

This study aimed to compare the influence of extraction methods on the pharmaceutical and cosmetic properties of medicinal and aromatic plants (MAPs). For this purpose, the dried plant materials were extracted using advanced (microwave (MAE), ultrasonic (UAE), and homogenizer (HAE) assisted extractions) and conventional techniques (maceration, percolation, decoction, infusion, and Soxhlet). The tyrosinase, elastase, α-amylase, butyryl, and acetylcholinesterase inhibition were tested by using L-3,4 dihydroxy-phenylalanine, N-Succinyl-Ala-Ala-p-nitroanilide, butyryl, and acetylcholine as respective substrates. Antioxidant activities were studied by ABTS, DPPH, and FRAP. In terms of extraction yield, advanced extraction techniques showed the highest values (MAE > UAE > HAE). Chemical profiles were dependent on the phenolic compounds tested, whereas the antioxidant activities were always higher, mainly in infusion and decoction as a conventional technique. In relation to the pharmaceutical and cosmetic properties, the highest inhibitory activities against α-amylase and acetylcholinesterase were observed for Soxhlet and macerated extracts, whereas the highest activity against tyrosinase was obtained with MAE > maceration > Soxhlet. Elastase and butyrylcholinesterase inhibitory activities were in the order of Soxhlet > maceration > percolation, with no activities recorded for the other tested methods. In conclusion, advanced methods afford an extract with high yield, while conventional methods might be an adequate approach for minimal changes in the biological properties of the extract.


Asunto(s)
Extractos Vegetales , Plantas Medicinales , Acetilcolinesterasa , Antioxidantes/química , Antioxidantes/farmacología , Butirilcolinesterasa , Monofenol Monooxigenasa , Elastasa Pancreática , Extractos Vegetales/química , Extractos Vegetales/farmacología , alfa-Amilasas
3.
Biochem Biophys Res Commun ; 446(3): 798-804, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24582563

RESUMEN

The objective of this study was to evaluate the biological activities of the major phytosterols present in argan oil (AO) and in cactus seed oil (CSO) in BV2 microglial cells. Accordingly, we first determined the sterol composition of AO and CSO, showing the presence of Schottenol and Spinasterol as major sterols in AO. While in CSO, in addition to these two sterols, we found mainly another sterol, the Sitosterol. The chemical synthesis of Schottenol and Spinasterol was performed. Our results showed that these two phytosterols, as well as sterol extracts from AO or CSO, are not toxic to microglial BV2 cells. However, treatments by these phytosterols impact the mitochondrial membrane potential. Furthermore, both Schottenol and Spinasterol can modulate the gene expression of two nuclear receptors, liver X receptor (LXR)-α and LXRß, their target genes ABCA1 and ABCG1. Nonetheless, only Schottenol exhibited a differential activation vis-à-vis the nuclear receptor LXRß. Thus Schottenol and Spinasterol can be considered as new LXR agonists, which may play protective roles by the modulation of cholesterol metabolism.


Asunto(s)
Microglía/efectos de los fármacos , Receptores Nucleares Huérfanos/agonistas , Aceites de Plantas/química , Sitoesteroles/farmacología , Estigmasterol/análogos & derivados , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Línea Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Lipoproteínas/genética , Receptores X del Hígado , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Microglía/citología , Opuntia/química , Receptores Nucleares Huérfanos/genética , Semillas/química , Esteroles/análisis , Estigmasterol/síntesis química , Estigmasterol/farmacología
4.
Molecules ; 19(9): 14879-901, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25232708

RESUMEN

Opuntia ficus-indica, commonly referred to as prickly pear or nopal cactus, is a dicotyledonous angiosperm plant. It belongs to the Cactaceae family and is characterized by its remarkable adaptation to arid and semi-arid climates in tropical and subtropical regions of the globe. In the last decade, compelling evidence for the nutritional and health benefit potential of this cactus has been provided by academic scientists and private companies. Notably, its rich composition in polyphenols, vitamins, polyunsaturated fatty acids and amino acids has been highlighted through the use of a large panel of extraction methods. The identified natural cactus compounds and derivatives were shown to be endowed with biologically relevant activities including anti-inflammatory, antioxidant, hypoglycemic, antimicrobial and neuroprotective properties. The present review is aimed at stressing the major classes of cactus components and their medical interest through emphasis on some of their biological effects, particularly those having the most promising expected health benefit and therapeutic impacts.


Asunto(s)
Opuntia/química , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Extractos Vegetales/uso terapéutico , Polifenoles/farmacología , Polifenoles/uso terapéutico
5.
Front Nutr ; 10: 1193509, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404862

RESUMEN

Background: Naringenin (NA) is a natural flavonoid used in the formulation of a wide range of pharmaceutical, fragrance, and cosmetic products. In this research, NA was extracted from Searsia tripartita using an environmentally friendly, high efficiency extraction method: an ultrasound-assisted extraction with deep eutectic solvents (UAE-DES). Methods: Six natural deep eutectic solvent systems were tested. Choline chloride was used as the hydrogen bond acceptor (HBA), and formic acid, ethylene glycol, lactic acid, urea, glycerol, and citric acid were used as hydrogen bond donors (HBD). Results: Based on the results of single-factor experiments, response surface methodology using a Box-Behnken design was applied to determine the optimal conditions for UAE-DES. According to the results, the optimal NA extraction parameters were as follows: DES-1 consisted of choline chloride (HBA) and formic acid (HBD) in a mole ratio of 2:1, an extraction time of 10 min, an extraction temperature of 50°C, an ultrasonic amplitude of 75 W, and a solid-liquid ratio of 1/60 g/mL. Extracted NA was shown to inhibit the activity of different enzymes in vitro, including α-amylase, acetylcholinesterase, butyrylcholinesterase, tyrosinase, elastase, collagenase, and hyaluronidase. Conclusion: Thus, the UAE-DES technique produced high-efficiency NA extraction while retaining bioactivity, implying broad application potential, and making it worthy of consideration as a high-throughput green extraction method.

6.
Antioxidants (Basel) ; 12(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36978973

RESUMEN

Isoquercetin (ISQ) is reported to be a powerful antioxidant with extremely high bioavailability and structural stability compared to aglycone quercetin. Despite this, it is not well studied due to the limited methods for its extraction. With the growing interest in the research and analysis of ISQ-rich herbs, there is a need to optimize an efficient and rapid method for their extraction. In the present study, the ultrasound-assisted extraction of ISQ from Ephedra alata Decne was optimized by a response surface methodology (RSM) using high-performance liquid chromatography as a separation method. The best possible ranges for extraction time (10-30 min), temperature (50-70 °C), ultrasonic power (60-90 W), solvent-to-solid ratio (50-70 mL/g), and ethanol concentration (50-70%) were determined using a single factor analysis. Subsequently, an optimization of the extraction conditions was performed with RSM using the Box-Behnken design. An ultrasonication time of 10 min, a temperature of 60 °C, a power of 75 W, a solvent-to-solid ratio of 60 mL/g, and an ethanol concentration of 70% were determined to be the optimal conditions for the highest recovery of isoquercetin (1033.96 ± 3.28 µg/g). Furthermore, E. alata powder morphology (using a scanning electron microscope), antioxidant activities, and the inhibition potential of key enzymes involved in skin aging (elastase and collagenase), hyperpigmentation (tyrosinase), diabetes (α-amylase), inflammation (hyaluronidase), and neurodegenerative disorders (cholinesterase) were determined and compared with those using the Soxhlet method. This study established a highly efficient method for ISQ extraction and suggested several potential applications of ISQ in the pharmaceutical and cosmetics industries.

7.
Front Plant Sci ; 13: 926653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873968

RESUMEN

Cacti are one of the most significant and diversified groups of angiosperms, distributed and cultivated globally, mostly in semi-arid, arid, and the Mediterranean climate regions. Conventionally, they are propagated by seeds or through vegetative propagation via rooted offshoots or grafting. However, these multiplication procedures remain insufficient for mass propagation. In vitro culture techniques are utilized to mass propagate endangered and commercial cacti species. These include somatic embryogenesis and plant regeneration through indirect or direct organogenesis. The latter is a promising tool for commercial clonal propagation of high-value species and has been successfully implemented for several species, such as Mammillaria, Hylocereus, Cereus, Echinocereus, and Ariocarpus. However, its success depends on explant type, basal nutrient formulation of culture medium, and types and concentrations of plant growth regulators. This study aimed to assess the potential of in vitro propagation methods applied to cacti species and discuss the different factors affecting the success of these methods. This study has also highlighted the insufficient work on Opuntia species for mass propagation through axillary buds' proliferation. The development of an efficient micropropagation protocol is thus needed to meet the supply of increasing demand of Opuntia species for human consumption as fruit, animal feed, and ecological restoration in semi-arid and arid zones.

8.
Front Plant Sci ; 12: 783615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069642

RESUMEN

The argan tree, Argania spinosa (L.) Skeels, is a horticultural forestry species characterized by its endemicity and adaptation to arid and semi-arid zones in the southwest of Morocco. Despite its limited geographical distribution, argan tree presents large genetic diversity, suggesting that improvement of argan is possible. This species plays important ecological, and socioeconomic roles in the sustainable development of the country. The integration of arganiculture into Moroccan agricultural policy has been implemented through a sector strategy, which is fully aligned with the conservation and regeneration of argan forest. A. spinosa is suitable for incorporation into different agroforestry productive systems under agro-fruit-forest model and its domestication will provide a powerful means of socio-economic and environmental management. Here, we provide an overview of the argan tree literature and highlight the specific aspects of argan stands, as agro-forest systems, with the aim of developing an adequate strategy of conservation and domestication of this species. We introduce promising programs and projects for argan plantations and arganiculture, which have been adopted to relieve anthropogenic pressure on the natural argan forest.

9.
Biomed Pharmacother ; 139: 111675, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33965725

RESUMEN

We previously profiled the chemical composition of wax apple, Syzygium samarangense, leaf extract using HR-LC-MS/MS and reported its antioxidant, hepatoprotective and antitrypanosomal activities. The plant is widely used in traditional medicine to cure several ailments like bronchitis, asthma, diabetes, fever, pathogenic infections, gut spasms, as well as renal diseases. However, neither the gastroprotective effects nor the underlying mechanisms were explored. Here, we investigated the gastroprotective potential of the leaf extract on indomethacin-induced gastric ulcer in rats and explored the involved mechanism(s) of action. Administration of indomethacin significantly increased the ulcer index, mucosal injury, the gastric levels of the inflammatory markers nuclear factor kabba B-p65(NF-κB p65), myeloperoxidase (MPO), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), lipid peroxidation product, malondialdehyde (MDA) and Caspase-3 expression. It reduced the gastric levels of the endogenous antioxidants glutathione as well peroxidase (GPx), reduced glutathione (GSH) and the gastric mucosal protective factors, mucus secretion and goblet cells. Pretreatment with the leaf extract displayed a prominent decrease in the ulcer index, inflammatory cell infiltration, inflammatory markers, MDA, protein expression of Caspase-3 and a significant increase in the gastric levels of the endogenous antioxidants, mucus content and goblet cell proliferation when compared to the indomethacin group. The individual secondary metabolites of the extract exhibited low binding energy when docked into the prostaglandin receptors EP3 and EP4. This study revealed the gastroprotective effect of S. samarangense on indomethacin-induced gastric ulcer in rats. The gastroprotective effects might be attributed to cytoprotective, antioxidant, anti-inflammatory and antiapoptotic activities with a possible potential of activating EP3 and EP4 receptors. In conclusion, S. samarangense has a promising potential in the prevention of NSAIDs-induced ulcers.


Asunto(s)
Antiinflamatorios no Esteroideos , Indometacina , FN-kappa B/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Hojas de la Planta/química , Transducción de Señal/efectos de los fármacos , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/prevención & control , Syzygium/química , Animales , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Biomarcadores , Células Caliciformes/efectos de los fármacos , Masculino , Simulación del Acoplamiento Molecular , Moco/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Ratas , Ratas Wistar
10.
J Ethnopharmacol ; 259: 112950, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32450235

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Ziziphus (Rhamnaceae) contains 58 accepted species that are extensively used by local people and medicinal practitioners in arid and semi-arid regions for the treatment of diarrhoea, dysentery, cholera, diabetic, hypertension, inflammation, intestinal spasm, liver, malaria and other diseases. Aims of this review: This review article documents and critically assesses, for the first time; up to date categorized information about botanical traits, distribution, traditional uses, phytochemistry, pharmacological and toxicological effects of Ziziphus species. METHODS: Information was collected systematically from electronic scientific databases including Google Scholar, Science Direct, PubMed, Web of Science, ACS Publications, Elsevier, SciFinder, Wiley Online Library and CNKI, as well as other literature sources (e.g., books). KEY FINDINGS: The phytochemical investigations of plants of this genus have led to the identification of about 431 chemical constituents. Cyclopeptide alkaloids and flavonoids are the predominant groups. The crude extracts and isolated compounds exhibit a wide range of in vitro and in vivo pharmacologic effects, including antimicrobial, antitumour, antidiabetic, antidiarrhoeal, anti-inflammatory, antipyretic, antioxidant and hepatoprotective activities. Toxicity studies indicate that Ziziphus species seems to be non-toxic at typical therapeutic doses. CONCLUSION: Phytochemical and pharmacological studies have demonstrated that Ziziphus species are important medicinal herbs with prominent bioactivities. The focus so far has only been on ten species; however, plants of this genus can potentially yield a wide range of other products with different properties. Meticulous studies on pharmaceutical standardisation, mode of action of the active constituents and toxicity of Ziziphus species are needed to meet the growing demands of the pharmaceutical industry and to exploit their preventive and therapeutic potential fully.


Asunto(s)
Medicina Tradicional , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/farmacología , Ziziphus , Animales , Etnobotánica , Etnofarmacología , Humanos , Fitoquímicos/aislamiento & purificación , Fitoquímicos/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Ziziphus/química
11.
Methods Protoc ; 2(2)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31164619

RESUMEN

Tetrahymena pyriformis (protozoa) is intensely investigated as a model organism, offering numerous advantages in comprehensive and multidisciplinary studies using morphologic or molecular methods. Since DNA extraction is a vital step of any molecular experiment, here a new mixed surfactant (Sodium dodecyl sulfate (SDS) 20%/Triton X-100) was adopted for effective DNA extraction from Tetrahymena pyriformis under an easy, fast protocol. The efficiency of this technique was then compared with three widely-used alternative techniques, namely the Chelex 100 matrix, Ammonium pyrrolidine dithiocarbamate (APD) complex and SDS-chloroform methods. DNA extraction was analyzed by pulsed-field gel electrophoresis, spectral measurement, fluorometry (Qubit), restriction enzyme digestion, and polymerase chain reaction. Data analysis revealed that the quantity and quality of the recovered DNA varied depending on the applied DNA extraction method. The new method (SDS 20%/Triton X-100) was the most efficient for extracting DNA from Tetrahymena pyriformis with high integrity and purity, affordable cost, less time, and suitability for molecular applications.

12.
C R Biol ; 342(1-2): 7-17, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30595494

RESUMEN

This study was carried out in order to investigate the ability of tissues of Argania spinosa (L.) to undergo unlimited cell divisions by triggering their proliferative potential via callogenesis. Axenic cultures were efficiently established using axillary buds cultured on half-strength Murashige and Skoog (MS) medium after 20min of surface sterilization with sodium hypochlorite 6% (v/v). The highest callus rate was achieved with 1.0mgL-1 of naphthaleneacetic acid (NAA) and 1.0mgL-1 of 2,4-dichlorophenoxyacetic acid (2,4D) or similarly with 0.01mgL-1 of 6-benzylaminopurine (BAP) and 1.0mgL-1 of 2,4D at pH of 5.8, under dark conditions. The results of this study show also a significant increase in the callus's antioxidant power under abiotic pressure induced by NaCl. Catalase (CAT), peroxidase (PO), and superoxide dismutase (SOD) activities were significantly triggered, which protected the cells from the stimulated oxidative stress, under hydrogen peroxide (H2O2) significant release. This reaction favors subsequently the tissue recover process linked to the low abundance of polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content. This work proves the efficiency of salt stress in boosting the argan cell's antioxidant status, which could be commercially applied in the field of cells regenerative therapy.


Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo , Sapotaceae/clasificación , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Peroxidasa/metabolismo
13.
Steroids ; 99(Pt B): 119-24, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25595450

RESUMEN

Spinasterol and schottenol, two phytosterols present in argan oil and in cactus pear seed oil, were synthesized from commercially available stigmasterol by a four steps reactions. In addition, the effects of these phytosterols on cell growth and mitochondrial activity were evaluated on 158N murine oligodendrocytes, C6 rat glioma cells, and SK-N-BE human neuronal cells with the crystal violet test and the MTT test, respectively. The effects of spinasterol and schottenol were compared with 7-ketocholesterol (7KC) and ferulic acid, which is also present in argan and cactus pear seed oil. Whatever the cells considered, dose dependent cytotoxic effects of 7KC were observed whereas no or slight effects of ferulic acid were found. With spinasterol and schottenol, no or slight effects on cell growth were detected. With spinasterol, reduced mitochondrial activities (30-50%) were found on 158N and C6 cells; no effect was found on SK-N-BE. With schottenol, reduced mitochondrial activity were revealed on 158N (50%) and C6 (10-20%) cells; no effect was found on SK-N-BE. Altogether, these data suggest that spinasterol and schottenol can modulate mitochondrial activity and might therefore influence cell metabolism.


Asunto(s)
Sistema Nervioso Central/citología , Fitosteroles/síntesis química , Aceites de Plantas/química , Pyrus/química , Semillas/química , Sitoesteroles/síntesis química , Estigmasterol/análogos & derivados , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fitosteroles/química , Fitosteroles/farmacología , Ratas , Sitoesteroles/química , Sitoesteroles/farmacología , Estigmasterol/síntesis química , Estigmasterol/química , Estigmasterol/farmacología
14.
Biochim Open ; 1: 51-59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-29632829

RESUMEN

In patients with sepsis, liver metabolism and its capacity to provide other organs with energetic substrates are impaired. This and many other pathophysiological changes seen in human patients are reproduced in mice injected with purified endotoxin (lipopolysaccharide, LPS). In the present study, down-regulation of genes involved in hepatic fatty acid oxidation (FAOx) and gluconeogenesis in mice exposed to LPS was challenged by nutritional intervention with Argan oil. Mice given a standard chow supplemented or not with either 6% (w/w) Argan oil (AO) or 6% (w/w) olive oil (OO) prior to exposure to LPS were explored for liver gene expressions assessed by mRNA transcript levels and/or enzyme activities. AO (or OO) food supplementation reveals that, in LPS-treated mice, hepatic expression of genes involved in FAOx and gluconeogenesis was preserved. This preventive protection might be related to the recovery of the gene expressions of nuclear receptors peroxisome proliferator-activated receptor α (PPARα) and estrogen related receptor α (ERRα) and their coactivator peroxisome proliferator-activated receptor gamma coactivator-1α, (PGC-1α). These preventive mechanisms conveyed by AO against LPS-induced metabolic dysregulation might add new therapeutic potentialities in the management of human sepsis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA