Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2218630120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574673

RESUMEN

A family of leucine-rich-repeat-containing G-protein-coupled receptors (LGRs) mediate diverse physiological responses when complexed with their cognate ligands. LGRs are present in all metazoan animals. In humans, the LGR ligands include glycoprotein hormones (GPHs) chorionic gonadotropin (hCG), luteinizing hormone, follicle-stimulating hormone (hFSH), and thyroid-stimulating hormone (hTSH). These hormones are αß heterodimers of cystine-knot protein chains. LGRs and their ligand chains have coevolved. Ancestral hormone homologs, present in both bilaterian animals and chordates, are identified as α2ß5. We have used single-wavelength anomalous diffraction and molecular replacement to determine structures of the α2ß5 hormone from Caenorhabditis elegans (Ceα2ß5). Ceα2ß5 is unglycosylated, as are many other α2ß5 hormones. Both Hsα2ß5, the human homolog of Ceα2ß5, and hTSH activate the same receptor (hTSHR). Despite having little sequence similarity to vertebrate GPHs, apart from the cysteine patterns from core disulfide bridges, Ceα2ß5 is generally similar in structure to these counterparts; however, its α2 and ß5 subunits are more symmetric as compared with α and ß of hCG and hFSH. This quasisymmetry suggests a hypothetical homodimeric antecedent of the α2ß5 and αß heterodimers. Known structures together with AlphaFold models from the sequences for other LGR ligands provide representatives for the molecular evolution of LGR ligands from early metazoans through the present-day GPHs. The experimental Ceα2ß5 structure validates its AlphaFold model, and thus also that for Hsα2ß5; and interfacial characteristics in a model for the Hsα2ß5:hTSHR complex are similar to those found in an experimental hTSH:hTSHR structure.


Asunto(s)
Caenorhabditis elegans , Glicoproteínas , Hormonas , Receptores Acoplados a Proteínas G , Animales , Secuencia de Aminoácidos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/genética
2.
Nature ; 570(7760): 252-256, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31142835

RESUMEN

Characterizing the genome of mature virions is pivotal to understanding the highly dynamic processes of virus assembly and infection. Owing to the different cellular fates of DNA and RNA, the life cycles of double-stranded (ds)DNA and dsRNA viruses are dissimilar. In terms of nucleic acid packing, dsDNA viruses, which lack genome segmentation and intra-capsid transcriptional machinery, predominantly display single-spooled genome organizations1-8. Because the release of dsRNA into the cytoplasm triggers host defence mechanisms9, dsRNA viruses retain their genomes within a core particle that contains the enzymes required for RNA replication and transcription10-12. The genomes of dsRNA viruses vary greatly in the degree of segmentation. In members of the Reoviridae family, genomes consist of 10-12 segments and exhibit a non-spooled arrangement mediated by RNA-dependent RNA polymerases11-14. However, whether this arrangement is a general feature of dsRNA viruses remains unknown. Here, using cryo-electron microscopy to resolve the dsRNA genome structure of the tri-segmented bacteriophage ɸ6 of the Cystoviridae family, we show that dsRNA viruses can adopt a dsDNA-like single-spooled genome organization. We find that in this group of viruses, RNA-dependent RNA polymerases do not direct genome ordering, and the dsRNA can adopt multiple conformations. We build a model that encompasses 90% of the genome, and use this to quantify variation in the packing density and to characterize the different liquid crystalline geometries that are exhibited by the tightly compacted nucleic acid. Our results demonstrate that the canonical model for the packing of dsDNA can be extended to dsRNA viruses.


Asunto(s)
Bacteriófago phi 6/química , Bacteriófago phi 6/ultraestructura , Microscopía por Crioelectrón , Empaquetamiento del ADN , Cristales Líquidos , Conformación de Ácido Nucleico , ARN Bicatenario/ultraestructura , ARN Viral/ultraestructura , Bacteriófago phi 6/genética , Genoma Viral , Modelos Moleculares , ARN Bicatenario/química , ARN Viral/química , ARN Polimerasa Dependiente del ARN/metabolismo
3.
J Gen Virol ; 105(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39163113

RESUMEN

The unenveloped Bluetongue virus capsid comprises several structural layers, the inner two comprising a core, which assembles before addition of the outer proteins, VP2 and VP5. Two symmetric trimers of VP5 fit like pegs into two distinct pits on the core and undergo pH conformational changes in the context of the virus, associated with cell entry. Here we show that in isolation VP5 alone undergoes essentially the same changes with pH and confirm a helical transition, indicating that VP5 is a motor during cell entry. In the absence of VP5 the two pits on the core differ from each other, presumably due to the asymmetric underlying structure of VP3, the innermost capsid protein. On insertion of VP5 these pits become closely similar and remain similar at low pH whilst VP5 is present. This natural asymmetry presumably destabilises the attachment of VP5, facilitating ejection upon low pH, membrane penetration and cell entry.


Asunto(s)
Virus de la Lengua Azul , Proteínas de la Cápside , Virus de la Lengua Azul/fisiología , Virus de la Lengua Azul/química , Concentración de Iones de Hidrógeno , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/genética , Internalización del Virus , Animales , Conformación Proteica
4.
Nat Chem Biol ; 18(10): 1096-1103, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35799064

RESUMEN

The abundance of recorded protein sequence data stands in contrast to the small number of experimentally verified functional annotation. Here we screened a million-membered metagenomic library at ultrahigh throughput in microfluidic droplets for ß-glucuronidase activity. We identified SN243, a genuine ß-glucuronidase with little homology to previously studied enzymes of this type, as a glycoside hydrolase 3 family member. This glycoside hydrolase family contains only one recently added ß-glucuronidase, showing that a functional metagenomic approach can shed light on assignments that are currently 'unpredictable' by bioinformatics. Kinetic analyses of SN243 characterized it as a promiscuous catalyst and structural analysis suggests regions of divergence from homologous glycoside hydrolase 3 members creating a wide-open active site. With a screening throughput of >107 library members per day, picolitre-volume microfluidic droplets enable functional assignments that complement current enzyme database dictionaries and provide bridgeheads for the annotation of unexplored sequence space.


Asunto(s)
Glucuronidasa , Metagenómica , Biblioteca de Genes , Glucuronidasa/genética , Glucuronidasa/metabolismo , Glicósido Hidrolasas/química , Metagenoma
5.
Mol Cell ; 61(1): 125-37, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26711008

RESUMEN

Influenza virus polymerase transcribes or replicates the segmented RNA genome (vRNA) into respectively viral mRNA or full-length copies and initiates RNA synthesis by binding the conserved 3' and 5' vRNA ends (the promoter). In recent structures of promoter-bound polymerase, the cap-binding and endonuclease domains are configured for cap snatching, which generates capped transcription primers. Here, we present a FluB polymerase structure with a bound complementary cRNA 5' end that exhibits a major rearrangement of the subdomains within the C-terminal two-thirds of PB2 (PB2-C). Notably, the PB2 nuclear localization signal (NLS)-containing domain translocates ∼90 Što bind to the endonuclease domain. FluA PB2-C alone and RNA-free FluC polymerase are similarly arranged. Biophysical and cap-dependent endonuclease assays show that in solution the polymerase explores different conformational distributions depending on which RNA is bound. The inherent flexibility of the polymerase allows it to adopt alternative conformations that are likely important during polymerase maturation into active progeny RNPs.


Asunto(s)
Gammainfluenzavirus/enzimología , Subtipo H5N1 del Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Virus de la Influenza B/genética , Gammainfluenzavirus/genética , Rayos Láser , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Señales de Localización Nuclear/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Ribonucleoproteínas/metabolismo , Dispersión del Ángulo Pequeño , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/genética
6.
Nucleic Acids Res ; 48(17): 9886-9898, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32453431

RESUMEN

Obtaining phase information remains a formidable challenge for nucleic acid structure determination. The introduction of an X-ray synchrotron beamline designed to be tunable to long wavelengths at Diamond Light Source has opened the possibility to native de novo structure determinations by the use of intrinsic scattering elements. This provides opportunities to overcome the limitations of introducing modifying nucleotides, often required to derive phasing information. In this paper, we build on established methods to generate new tools for nucleic acid structure determinations. We report on the use of (i) native intrinsic potassium single-wavelength anomalous dispersion methods (K-SAD), (ii) use of anomalous scattering elements integral to the crystallization buffer (extrinsic cobalt and intrinsic potassium ions), (iii) extrinsic bromine and intrinsic phosphorus SAD to solve complex nucleic acid structures. Using the reported methods we solved the structures of (i) Pseudorabies virus (PRV) RNA G-quadruplex and ligand complex, (ii) PRV DNA G-quadruplex, and (iii) an i-motif of human telomeric sequence. Our results highlight the utility of using intrinsic scattering as a pathway to solve and determine non-canonical nucleic acid motifs and reveal the variability of topology, influence of ligand binding, and glycosidic angle rearrangements seen between RNA and DNA G-quadruplexes of the same sequence.


Asunto(s)
Cristalografía por Rayos X/métodos , Motivos de Nucleótidos , G-Cuádruplex , Herpesvirus Suido 1/química , Humanos , ARN Viral/química , Telómero/química
7.
EMBO J ; 36(20): 3062-3079, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28864543

RESUMEN

Certain pathogenic bacteria produce and release toxic peptides to ensure either nutrient availability or evasion from the immune system. These peptides are also toxic to the producing bacteria that utilize dedicated ABC transporters to provide self-immunity. The ABC transporter McjD exports the antibacterial peptide MccJ25 in Escherichia coli Our previously determined McjD structure provided some mechanistic insights into antibacterial peptide efflux. In this study, we have determined its structure in a novel conformation, apo inward-occluded and a new nucleotide-bound state, high-energy outward-occluded intermediate state, with a defined ligand binding cavity. Predictive cysteine cross-linking in E. coli membranes and PELDOR measurements along the transport cycle indicate that McjD does not undergo major conformational changes as previously proposed for multi-drug ABC exporters. Combined with transport assays and molecular dynamics simulations, we propose a novel mechanism for toxic peptide ABC exporters that only requires the transient opening of the cavity for release of the peptide. We propose that shielding of the cavity ensures that the transporter is available to export the newly synthesized peptides, preventing toxic-level build-up.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacteriocinas/química , Bacteriocinas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Transporte de Proteínas
8.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31996434

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is the causative agent of the most widespread tick-borne viral infection in humans. CCHFV encodes a secreted glycoprotein (GP38) of unknown function that is the target of a protective antibody. Here, we present the crystal structure of GP38 at a resolution of 2.5 Å, which revealed a novel fold primarily consisting of a 3-helix bundle and a ß-sandwich. Sequence alignment and homology modeling showed distant homology between GP38 and the ectodomain of Gn (a structural glycoprotein in CCHFV), suggestive of a gene duplication event. Analysis of convalescent-phase sera showed high titers of GP38 antibodies indicating immunogenicity in humans during natural CCHFV infection. The only protective antibody for CCHFV in an adult mouse model reported to date, 13G8, bound GP38 with subnanomolar affinity and protected against heterologous CCHFV challenge in a STAT1-knockout mouse model. Our data strongly suggest that GP38 should be evaluated as a vaccine antigen and that its structure provides a foundation to investigate functions of this protein in the viral life cycle.IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen that poses a high risk to public health. Due to the high morbidity and mortality rates associated with CCHFV infection, there is an urgent need to develop medical countermeasures for disease prevention and treatment. CCHFV GP38, a secreted glycoprotein of unknown function unique to the Nairoviridae family, was recently shown to be the target of a protective antibody against CCHFV. Here, we present the crystal structure of GP38, which revealed a novel fold with distant homology to another CCHFV glycoprotein that is suggestive of a gene duplication event. We also demonstrate that antibody 13G8 protects STAT1-knockout mice against heterologous CCHFV challenge using a clinical isolate from regions where CCHFV is endemic. Collectively, these data advance our understanding of GP38 structure and antigenicity and should facilitate future studies investigating its function.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Animales , Anticuerpos Antivirales/inmunología , Clonación Molecular , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Femenino , Glicoproteínas/metabolismo , Fiebre Hemorrágica de Crimea/inmunología , Fiebre Hemorrágica de Crimea/mortalidad , Fiebre Hemorrágica de Crimea/prevención & control , Fiebre Hemorrágica de Crimea/virología , Humanos , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Noqueados , Modelos Moleculares , Conformación Proteica , Factor de Transcripción STAT1/genética , Análisis de Secuencia de Proteína
9.
Nat Chem Biol ; 15(10): 975-982, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31548691

RESUMEN

Hedgehog (HH) ligands, classical morphogens that pattern embryonic tissues in all animals, are covalently coupled to two lipids-a palmitoyl group at the N terminus and a cholesteroyl group at the C terminus. While the palmitoyl group binds and inactivates Patched 1 (PTCH1), the main receptor for HH ligands, the function of the cholesterol modification has remained mysterious. Using structural and biochemical studies, along with reassessment of previous cryo-electron microscopy structures, we find that the C-terminal cholesterol attached to Sonic hedgehog (Shh) binds the first extracellular domain of PTCH1 and promotes its inactivation, thus triggering HH signaling. Molecular dynamics simulations show that this interaction leads to the closure of a tunnel through PTCH1 that serves as the putative conduit for sterol transport. Thus, Shh inactivates PTCH1 by grasping its extracellular domain with two lipidic pincers, the N-terminal palmitate and the C-terminal cholesterol, which are both inserted into the PTCH1 protein core.


Asunto(s)
Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Animales , Colesterol/química , Regulación de la Expresión Génica , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ratones , Modelos Moleculares , Células 3T3 NIH , Receptor Patched-1/química , Unión Proteica , Conformación Proteica , Anticuerpos de Dominio Único
10.
Nature ; 527(7576): 114-7, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26503046

RESUMEN

Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 Å, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.


Asunto(s)
Gammainfluenzavirus/enzimología , ARN Polimerasa Dependiente del ARN/química , Apoenzimas/química , Apoenzimas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Endonucleasas/química , Endonucleasas/metabolismo , Activación Enzimática , Modelos Moleculares , Iniciación de la Cadena Peptídica Traduccional , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Caperuzas de ARN/metabolismo , ARN Viral/biosíntesis , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleoproteínas/química
11.
Proc Natl Acad Sci U S A ; 115(19): E4350-E4357, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29666242

RESUMEN

Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability is a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 Å resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral α/ß-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters.


Asunto(s)
Proteínas Bacterianas/química , Burkholderiales/enzimología , Esterasas/química , Tereftalatos Polietilenos/química , Proteínas Bacterianas/genética , Burkholderiales/genética , Cristalografía por Rayos X , Esterasas/genética , Ingeniería de Proteínas , Especificidad por Sustrato
12.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30305351

RESUMEN

The emergence of Old and New World arenaviruses from rodent reservoirs persistently threatens human health. The GP1 subunit of the envelope-displayed arenaviral glycoprotein spike complex (GPC) mediates host cell recognition and is an important determinant of cross-species transmission. Previous structural analyses of Old World arenaviral GP1 glycoproteins, alone and in complex with a cognate GP2 subunit, have revealed that GP1 adopts two distinct conformational states distinguished by differences in the orientations of helical regions of the molecule. Here, through comparative study of the GP1 glycoprotein architectures of Old World Loei River virus and New World Whitewater Arroyo virus, we show that these rearrangements are restricted to Old World arenaviruses and are not induced solely by the pH change that is associated with virus endosomal trafficking. Our structure-based phylogenetic analysis of arenaviral GP1s provides a blueprint for understanding the discrete structural classes adopted by these therapeutically important targets.IMPORTANCE The genetically and geographically diverse group of viruses within the family Arenaviridae includes a number of zoonotic pathogens capable of causing fatal hemorrhagic fever. The multisubunit GPC glycoprotein spike complex displayed on the arenavirus envelope is a key determinant of species tropism and a primary target of the host humoral immune response. Here, we show that the receptor-binding GP1 subcomponent of the GPC spike from Old World but not New World arenaviruses adopts a distinct, pH-independent conformation in the absence of the cognate GP2. Our analysis provides a structure-based approach to understanding the discrete conformational classes sampled by these therapeutically important targets, informing strategies to develop arenaviral glycoprotein immunogens that resemble GPC as presented on the mature virion surface.


Asunto(s)
Arenavirus del Nuevo Mundo/clasificación , Arenavirus del Viejo Mundo/clasificación , Proteínas del Envoltorio Viral/química , Arenavirus del Nuevo Mundo/química , Arenavirus del Nuevo Mundo/metabolismo , Arenavirus del Viejo Mundo/química , Arenavirus del Viejo Mundo/metabolismo , Endosomas/virología , Evolución Molecular , Concentración de Iones de Hidrógeno , Modelos Moleculares , Filogenia , Estructura Secundaria de Proteína
13.
J Biol Chem ; 293(14): 5064-5078, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29449376

RESUMEN

The Salmonella-secreted effector SseK3 translocates into host cells, targeting innate immune responses, including NF-κB activation. SseK3 is a glycosyltransferase that transfers an N-acetylglucosamine (GlcNAc) moiety onto the guanidino group of a target arginine, modulating host cell function. However, a lack of structural information has precluded elucidation of the molecular mechanisms in arginine and GlcNAc selection. We report here the crystal structure of SseK3 in its apo form and in complex with hydrolyzed UDP-GlcNAc. SseK3 possesses the typical glycosyltransferase type-A (GT-A)-family fold and the metal-coordinating DXD motif essential for ligand binding and enzymatic activity. Several conserved residues were essential for arginine GlcNAcylation and SseK3-mediated inhibition of NF-κB activation. Isothermal titration calorimetry revealed SseK3's preference for manganese coordination. The pattern of interactions in the substrate-bound SseK3 structure explained the selection of the primary ligand. Structural rearrangement of the C-terminal residues upon ligand binding was crucial for SseK3's catalytic activity, and NMR analysis indicated that SseK3 has limited UDP-GlcNAc hydrolysis activity. The release of free N-acetyl α-d-glucosamine, and the presence of the same molecule in the SseK3 active site, classified it as a retaining glycosyltransferase. A glutamate residue in the active site suggested a double-inversion mechanism for the arginine N-glycosylation reaction. Homology models of SseK1, SseK2, and the Escherichia coli orthologue NleB1 reveal differences in the surface electrostatic charge distribution, possibly accounting for their diverse activities. This first structure of a retaining GT-A arginine N-glycosyltransferase provides an important step toward a better understanding of this enzyme class and their roles as bacterial effectors.


Asunto(s)
Glicosiltransferasas/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Glicosiltransferasas/química , Humanos , Modelos Moleculares , Conformación Proteica , Salmonella typhimurium/química , Alineación de Secuencia
14.
EMBO J ; 34(23): 2937-52, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26511021

RESUMEN

Herpesvirus nucleocapsids escape from the nucleus in a process orchestrated by a highly conserved, viral nuclear egress complex. In human cytomegalovirus, the complex consists of two proteins, UL50 and UL53. We solved structures of versions of UL53 and the complex by X-ray crystallography. The UL53 structures, determined at 1.93 and 3.0 Å resolution, contained unexpected features including a Bergerat fold resembling that found in certain nucleotide-binding proteins, and a Cys3His zinc finger. Substitutions of zinc-coordinating residues decreased UL50-UL53 co-localization in transfected cells, and, when incorporated into the HCMV genome, ablated viral replication. The structure of the complex, determined at 2.47 Å resolution, revealed a mechanism of heterodimerization in which UL50 clamps onto helices of UL53 like a vise. Substitutions of particular residues on the interaction interface disrupted UL50-UL53 co-localization in transfected cells and abolished virus production. The structures and the identification of contacts can be harnessed toward the rational design of novel and highly specific antiviral drugs and will aid in the detailed understanding of nuclear egress.


Asunto(s)
Herpesviridae/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Cristalografía por Rayos X , Genoma Viral/genética , Estructura Secundaria de Proteína , Replicación Viral/genética , Replicación Viral/fisiología
15.
Nucleic Acids Res ; 41(20): 9396-410, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23939620

RESUMEN

Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.


Asunto(s)
Cystoviridae/enzimología , ARN Helicasas/química , Proteínas Virales/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/clasificación , Secuencia de Aminoácidos , Sitios de Unión , Endodesoxirribonucleasas/química , Evolución Molecular , Modelos Moleculares , Datos de Secuencia Molecular , Nucleótidos/química , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN/química , ARN Helicasas/clasificación , Rec A Recombinasas/clasificación , Proteínas Virales/clasificación
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 8): 2197-203, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25084338

RESUMEN

Single-wavelength anomalous dispersion of S atoms (S-SAD) is an elegant phasing method to determine crystal structures that does not require heavy-atom incorporation or selenomethionine derivatization. Nevertheless, this technique has been limited by the paucity of the signal at the usual X-ray wavelengths, requiring very accurate measurement of the anomalous differences. Here, the data collection and structure solution of the N-terminal domain of the ectodomain of HCV E1 from crystals that diffracted very weakly is reported. By combining the data from 32 crystals, it was possible to solve the sulfur substructure and calculate initial maps at 7 Šresolution, and after density modication and phase extension using a higher resolution native data set to 3.5 Šresolution model building was achievable.


Asunto(s)
Hepacivirus/química , Proteínas del Envoltorio Viral/química , Secuencia de Aminoácidos , Clonación Molecular , Datos de Secuencia Molecular , Conformación Proteica , Proteínas del Envoltorio Viral/genética
17.
Acta Crystallogr D Struct Biol ; 80(Pt 10): 713-721, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39291627

RESUMEN

AlphaFold2 has revolutionized structural biology by offering unparalleled accuracy in predicting protein structures. Traditional methods for determining protein structures, such as X-ray crystallography and cryo-electron microscopy, are often time-consuming and resource-intensive. AlphaFold2 provides models that are valuable for molecular replacement, aiding in model building and docking into electron density or potential maps. However, despite its capabilities, models from AlphaFold2 do not consistently match the accuracy of experimentally determined structures, need to be validated experimentally and currently miss some crucial information, such as post-translational modifications, ligands and bound ions. In this paper, the advantages are explored of collecting X-ray anomalous data to identify chemical elements, such as metal ions, which are key to understanding certain structures and functions of proteins. This is achieved through methods such as calculating anomalous difference Fourier maps or refining the imaginary component of the anomalous scattering factor f''. Anomalous data can serve as a valuable complement to the information provided by AlphaFold2 models and this is particularly significant in elucidating the roles of metal ions.


Asunto(s)
Modelos Moleculares , Proteínas , Cristalografía por Rayos X/métodos , Proteínas/química , Conformación Proteica , Sustancias Macromoleculares/química , Metales/química
18.
Structure ; 32(3): 273-281.e4, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38176409

RESUMEN

Pestiviruses, within the family Flaviviridae, are economically important viruses of livestock. In recent years, new pestiviruses have been reported in domestic animals and non-cloven-hoofed animals. Among them, atypical porcine pestivirus (APPV) and Norway rat pestivirus (NRPV) have relatively little sequence conservation in their surface glycoprotein E2. Despite E2 being the main target for neutralizing antibodies and necessary for cell attachment and viral fusion, the mechanism of viral entry remains elusive. To gain further insights into the pestivirus E2 mechanism of action and to assess its diversity within the genus, we report X-ray structures of the pestivirus E2 proteins from APPV and NRPV. Despite the highly divergent structures, both are able to dimerize through their C-terminal domain and contain a solvent-exposed ß-hairpin reported to be involved in host receptor binding. Functional analysis of this ß-hairpin in the context of BVDV revealed its ability to rescue viral infectivity.


Asunto(s)
Pestivirus , Porcinos , Animales , Ratas , Pestivirus/genética , Glicoproteínas , Anticuerpos Neutralizantes , Glicoproteínas de Membrana , Filogenia
19.
Sci Rep ; 14(1): 23540, 2024 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384884

RESUMEN

The replication of RNA viruses relies on the activity of RNA-dependent RNA polymerases (RdRps). Despite large variations in their genomic sequences, viral RdRps share a common architecture generally known as a closed right hand. The P2 polymerase of cystovirus φ6 is currently among the best characterized viral RdRps. This polymerase is responsible for carrying out both replication and transcription of the viral double-stranded RNA genome using de novo initiation. Despite the extensive biochemical and structural studies conducted on φ6 P2, further structural information on other cystoviral RdRps is crucial to elucidate the structural and functional diversity of viral RdRps. Here, we have determined the atomic X-ray structure of the RdRp P2 from the φ6-related cystovirus φ8 at 3Å resolution. This structure completes the existing set of structural information on the φ8 polymerase complex and sheds light on the difference and similarities with related cystoviral RdRps.


Asunto(s)
Cystoviridae , ARN Polimerasa Dependiente del ARN , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Cystoviridae/genética , Cystoviridae/metabolismo , Cystoviridae/química , Modelos Moleculares , Cristalografía por Rayos X , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , ARN Viral/genética , ARN Viral/química , ARN Viral/metabolismo , Conformación Proteica
20.
Nat Commun ; 15(1): 7119, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164244

RESUMEN

The insulin-linked polymorphic region is a variable number of tandem repeats region of DNA in the promoter of the insulin gene that regulates transcription of insulin. This region is known to form the alternative DNA structures, i-motifs and G-quadruplexes. Individuals have different sequence variants of tandem repeats and although previous work investigated the effects of some variants on G-quadruplex formation, there is not a clear picture of the relationship between the sequence diversity, the DNA structures formed, and the functional effects on insulin gene expression. Here we show that different sequence variants of the insulin linked polymorphic region form different DNA structures in vitro. Additionally, reporter genes in cellulo indicate that insulin expression may change depending on which DNA structures form. We report the crystal structure and dynamics of an intramolecular i-motif, which reveal sequences within the loop regions forming additional stabilising interactions that are critical to formation of stable i-motif structures. The outcomes of this work reveal the detail in formation of stable i-motif DNA structures, with potential for rational based drug design for compounds to target i-motif DNA.


Asunto(s)
ADN , G-Cuádruplex , Insulina , Regiones Promotoras Genéticas , Insulina/química , Insulina/genética , ADN/química , ADN/genética , Humanos , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Cristalografía por Rayos X , Polimorfismo Genético , Secuencias Repetidas en Tándem/genética , Secuencia de Bases , Modelos Moleculares , Animales , Genes Reporteros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA