RESUMEN
Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/química , Bronquios/citología , Células Cultivadas , Ciudades , Células Epiteliales , Europa (Continente) , Humanos , Modelos Teóricos , Oxidación-Reducción , Población Rural , Población UrbanaRESUMEN
Secondary organic aerosol (SOA) comprises the majority of submicron particles and is important for air pollution, health, and climate. When SOA mixes with inorganic particles containing transition metals (e.g., Fe), chemical reactions altering physicochemical properties can occur. Here, we study Fe's impact on the formation and chemical composition of SOA formed via dark α-pinene ozonolysis on either (NH4)2SO4 or Fe-containing (NH4)2SO4 seed particles and aged at varying relative humidities (RHs). Aerosol composition was determined using online extractive electrospray ionization mass spectrometry, providing high-resolution chemical and temporal identification of monomers and dimers in the SOA. At high RH, Fe's presence resulted in higher particulate SOA mass concentrations (117 ± 14 µg m-3) than those formed in its absence (70 ± 1 µg m-3). Enhanced mass is coupled with more dimers (C15-20's), attributed to Fenton-driven oligomerization reactions. Experiments with Fe3+-containing seeds showed similar chemical composition and enhanced SOA mass, suggesting a dark reduction pathway to form Fe2+ in the presence of SOA. Overall, Fe's presence at high RH lowers SOA volatility and enhances particulate organic mass and condensed phased reactions of higher volatility species that would normally not participate in SOA formation, which may be important when considering its formation in air quality and climate models.
RESUMEN
Comprehensive identification of aerosol sources and their constituent organic compounds requires aerosol-phase molecular-level characterization with a high time resolution. While real-time chemical characterization of aerosols is becoming increasingly common, information about functionalization and structure is typically obtained from offline methods. This study presents a method for determining the presence of carboxylic acid functional groups in real time using extractive electrospray ionization mass spectrometry based on measurements of [M - H + 2Na]+ adducts. The method is validated and characterized using standard compounds. A proof-of-concept application to α-pinene secondary organic aerosol (SOA) shows the ability to identify carboxylic acids even in complex mixtures. The real-time capability of the method allows for the observation of the production of carboxylic acids, likely formed in the particle phase on short time scales (<120 min). Our research explains previous findings of carboxylic acids being a significant component of SOA and a quick decrease in peroxide functionalization following SOA formation. We show that the formation of these acids is commensurate with the increase of dimers in the particle phase. Our results imply that SOA is in constant evolution through condensed-phase processes, which lower the volatility of the aerosol components and increase the available condensed mass for SOA growth and, therefore, aerosol mass loading in the atmosphere. Further work could aim to quantify the effect of particle-phase acid formation on the aerosol volatility distributions.
Asunto(s)
Aerosoles , Ácidos Carboxílicos , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
The quantification of an aerosol chemical composition is complicated by the uncertainty in the sensitivity of each species detected. Soft-ionization response factors can vary widely from molecule to molecule. Here, we have employed a method to separate molecules by their volatility through systematic evaporation with a thermal denuder (TD). The fraction remaining after evaporation is compared between an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) and a scanning mobility particle sizer (SMPS), which provides a comparison between a quantified mass loss by the SMPS and the signal loss in the EESI-TOF. The sensitivity of the EESI-TOF is determined for both a simplified complex mixture (PEG-300) and also for a complex mixture of α-pinene secondary organic aerosol (SOA). For PEG-300, separation is possible on a molecule-by-molecule level with the TD and provides insights into the molecule-dependent sensitivity of the EESI-TOF, showing a higher sensitivity toward the most volatile molecule. For α-pinene SOA, sensitivity determination for specific classes is possible because of the number of molecular formula observed by the EESI-TOF. These classes are separated by their volatility and are broken down into monomers (O3-5,6-7,8+), dimers (O4-7,8+), and higher order oligomers (e.g., trimers and tetramers). Here, we show that the EESI-TOF initially measures 60.1% monomers, 32.7% dimers, and 7.2% trimers and tetramers in α-pinene SOA, but after sensitivity correction, the distribution of SOA is 37.4% monomers, 56.1% dimers, and 6.4% trimers and tetramers. These results provide a path forward for the quantification of aerosol components with the EESI-TOF in other applications and potentially for atmospheric measurements.
RESUMEN
The first excited state of molecular oxygen is singlet-state oxygen (1O2), formed by indirect photochemistry of chromophoric organic matter. To determine whether 1O2 can be a competitive atmospheric oxidant, we must first quantify its production in organic aerosols (OA). Here, we report the spatiotemporal distribution of 1O2 over a 1-year dataset of PM10 extracts at two locations in Switzerland, representing a rural and suburban site. Using a chemical probe technique, we measured 1O2 steady-state concentrations with a seasonality over an order of magnitude peaking in wintertime at 4.59 ± 0.01 × 10-13 M and with a quantum yield of up to 2%. Next, we identified biomass burning and anthropogenic secondary OA (SOA) as the drivers for 1O2 formation in the PM10 aqueous extracts using source apportionment data. Importantly, the quantity, the amount of brown carbon present in PM10, and the quality, the chemical composition of the brown carbon present, influence the concentration of 1O2 sensitized in each extract. Anthropogenic SOA in the extracts were 4 times more efficient in sensitizing 1O2 than primary biomass burning aerosols. Last, we developed an empirical fit to estimate 1O2 concentrations based on PM10 components, unlocking the ability to estimate 1O2 from existing source apportionment data. Overall, 1O2 is likely a competitive photo-oxidant in PM10 since 1O2 is sensitized by ubiquitous biomass burning OA and anthropogenic SOA.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Oxígeno Singlete , Biomasa , Aerosoles/química , Agua , Carbono , Oxígeno , Oxidantes , Monitoreo del AmbienteRESUMEN
97% of the urban population in the EU in 2019 were exposed to an annual fine particulate matter level higher than the World Health Organization (WHO) guidelines (5 µg/m3). Organic aerosol (OA) is one of the major air pollutants, and the knowledge of its sources is crucial for designing cost-effective mitigation strategies. Positive matrix factorization (PMF) on aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) data is the most common method for source apportionment (SA) analysis on ambient OA. However, conventional PMF requires extensive human labor, preventing the implementation of SA for routine monitoring applications. This study proposes the source finder real-time (SoFi RT, Datalystica Ltd.) approach for efficient retrieval of OA sources. The results generated by SoFi RT agree remarkably well with the conventional rolling PMF results regarding factor profiles, time series, diurnal patterns, and yearly relative contributions of OA factor on three year-long ACSM data sets collected in Athens, Paris, and Zurich. Although the initialization of SoFi RT requires a priori knowledge of OA sources (i.e., the approximate number of factors and relevant factor profiles) for the sampling site, this technique minimizes user interactions. Eventually, it could provide up-to-date trustable information on timescales useful to policymakers and air quality modelers.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Ciudades , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire/análisisRESUMEN
Atmospheric secondary organic aerosol (SOA) undergoes chemical and physical changes when exposed to UV radiation, affecting the atmospheric lifetime of the involved molecules. However, these photolytic processes remain poorly constrained. Here, we present a study aimed at characterizing, at a molecular level and in real time, the chemical composition of α-pinene SOA exposed to UV-A light at 50% relative humidity in an atmospheric simulation chamber. Significant SOA mass loss is observed at high loadings (â¼100 µg m-3), whereas the effect is less prevalent at lower loadings (â¼20 µg m-3). For the vast majority of molecules measured by the extractive electrospray time-of-flight mass spectrometer, there is a fraction that is photoactive and decays when exposed to UV-A radiation and a fraction that appears photorecalcitrant. The molecules that are most photoactive contain between 4 and 6 oxygen atoms, while the more highly oxygenated compounds and dimers do not exhibit significant decay. Overall, photolysis results in a reduction of the volatility of SOA, which cannot be explained by simple evaporative losses but requires either a change in volatility related to changes in functional groups or a change in physical parameters (i.e., viscosity).
Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Monoterpenos Bicíclicos , Monoterpenos , FotólisisRESUMEN
Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from [Formula: see text]C to [Formula: see text]C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.
RESUMEN
Current mass spectrometry techniques for the online measurement of organic aerosol (OA) composition are subjected to either thermal/ionization-induced artifacts or limited mass resolving power, hindering accurate molecular characterization. Here, we combined the soft ionization capability of extractive electrospray ionization (EESI) and the ultrahigh mass resolution of Orbitrap for real-time, near-molecular characterization of OAs. Detection limits as low as tens of ng m-3 with linearity up to hundreds of µg m-3 at 0.2 Hz time resolution were observed for single- and mixed-component calibrations. The performance of the EESI-Orbitrap system was further evaluated with laboratory-generated secondary OAs (SOAs) and filter extracts of ambient particulate matter. The high mass accuracy and resolution (140 000 at m/z 200) of the EESI-Orbitrap system enable unambiguous identification of the aerosol components' molecular composition and allow a clear separation between adjacent peaks, which would be significantly overlapping if a medium-resolution (20 000) mass analyzer was used. Furthermore, the tandem mass spectrometry (MS2) capability provides valuable insights into the compound structure. For instance, the MS2 analysis of ambient OA samples and lab-generated biogenic SOAs points to specific SOA precursors in ambient air among a range of possible isomers based on fingerprint fragment ions. Overall, this newly developed and characterized EESI-Orbitrap system will advance our understanding of the formation and evolution of atmospheric aerosols.
Asunto(s)
Material Particulado , Espectrometría de Masa por Ionización de Electrospray , Aerosoles , Límite de Detección , Espectrometría de Masas en TándemRESUMEN
To better understand the role of aromatic hydrocarbons in new-particle formation, we measured the particle-phase abundance and volatility of oxidation products following the reaction of aromatic hydrocarbons with OH radicals. For this we used thermal desorption in an iodide-adduct Time-of-Flight Chemical-Ionization Mass Spectrometer equipped with a Filter Inlet for Gases and AEROsols (FIGAERO-ToF-CIMS). The particle-phase volatility measurements confirm that oxidation products of toluene and naphthalene can contribute to the initial growth of newly formed particles. Toluene-derived (C7) oxidation products have a similar volatility distribution to that of α-pinene-derived (C10) oxidation products, while naphthalene-derived (C10) oxidation products are much less volatile than those from toluene or α-pinene; they are thus stronger contributors to growth. Rapid progression through multiple generations of oxidation is more pronounced in toluene and naphthalene than in α-pinene, resulting in more oxidation but also favoring functional groups with much lower volatility per added oxygen atom, such as hydroxyl and carboxylic groups instead of hydroperoxide groups. Under conditions typical of polluted urban settings, naphthalene may well contribute to nucleation and the growth of the smallest particles, whereas the more abundant alkyl benzenes may overtake naphthalene once the particles have grown beyond the point where the Kelvin effect strongly influences the condensation driving force.
Asunto(s)
Hidrocarburos Aromáticos , Compuestos Orgánicos Volátiles , Aerosoles , Gases , VolatilizaciónRESUMEN
Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/química , Aerosoles/química , Biomasa , China , Ciudades , Monitoreo del Ambiente , Combustibles Fósiles , Humanos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Salud Pública , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/químicaRESUMEN
We have systematically examined the gas and particle phase emissions from seven wood combustion devices. Among total carbon mass emitted (excluding CO2), CO emissions were dominant, together with nonmethane volatile organic compounds (NMVOCs) (10-40%). Automated devices emitted 1-3 orders of magnitude lower CH4 (0.002-0.60 g kg-1 of wood) and NMVOCs (0.01-1 g kg-1 of wood) compared to batch-operated devices (CH4: 0.25-2.80 g kg-1 of wood; NMVOCs: 2.5-19 g kg-1 of wood). 60-90% of the total NMVOCs were emitted in the starting phase of batch-operated devices, except for the first load cycles. Partial-load conditions or deviations from the normal recommended operating conditions, such as use of wet wood/wheat pellets, oxygen rich or deficit conditions, significantly enhanced the emissions. NMVOCs were largely dominated by small carboxylic acids and alcohols, and furans. Despite the large variability in NMVOCs emission strengths, the relative contribution of different classes showed large similarities among different devices and combustion phases. We show that specific improper operating conditions may even for advanced technology not result in the emission reduction of secondary organic aerosol (SOA) forming compounds and thus not reduce the impact of wood combustion on climate and health.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles , Biomasa , MaderaRESUMEN
We use a real-time temperature-programmed desorption chemical-ionization mass spectrometer (FIGAERO-CIMS) to measure particle-phase composition and volatility of nucleated particles, studying pure α-pinene oxidation over a wide temperature range (-50 °C to +25 °C) in the CLOUD chamber at CERN. Highly oxygenated organic molecules are much more abundant in particles formed at higher temperatures, shifting the compounds toward higher O/C and lower intrinsic (300 K) volatility. We find that pure biogenic nucleation and growth depends only weakly on temperature. This is because the positive temperature dependence of degree of oxidation (and polarity) and the negative temperature dependence of volatility counteract each other. Unlike prior work that relied on estimated volatility, we directly measure volatility via calibrated temperature-programmed desorption. Our particle-phase measurements are consistent with gas-phase results and indicate that during new-particle formation from α-pinene oxidation, gas-phase chemistry directly determines the properties of materials in the condensed phase. We now have consistency between measured gas-phase product concentrations, product volatility, measured and modeled growth rates, and the particle composition over most temperatures found in the troposphere.
Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles , Monoterpenos Bicíclicos , Monoterpenos , VolatilizaciónRESUMEN
Cooking is recognized as an important source of particulate pollution in indoor and outdoor environments. We conducted more than 100 individual experiments to characterize the particulate and non-methane organic gas emissions from various cooking processes, their reaction rates, and their secondary organic aerosol yields. We used this emission data to develop a box model, for simulating the cooking emission concentrations in a typical European home and the indoor gas-phase reactions leading to secondary organic aerosol production. Our results suggest that about half of the indoor primary organic aerosol emission rates can be explained by cooking. Emission rates of larger and unsaturated aldehydes likely are dominated by cooking while the emission rates of terpenes are negligible. We found that cooking dominates the particulate and gas-phase air pollution in non-smoking European households exceeding 1000 µg m-3 . While frying processes are the main driver of aldehyde emissions, terpenes are mostly emitted due to the use of condiments. The secondary aerosol production is negligible with around 2 µg m-3 . Our results further show that ambient cooking organic aerosol concentrations can only be explained by super-polluters like restaurants. The model offers a comprehensive framework for identifying the main parameters controlling indoor gas- and particle-phase concentrations.
Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Culinaria/métodos , Compuestos Orgánicos Volátiles/análisis , Aldehídos/análisis , Monitoreo del Ambiente , Humanos , Restaurantes , Terpenos/análisisRESUMEN
Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for particulate trace elements. Elements in PM2.5 were measured in wintertime Beijing, and the total concentrations of 14 trace elements were 1.3-7.3 times higher during severe pollution days than during low pollution days. Fe, Zn, and Pb were the most abundant elements independent of the PM pollution levels. Chemical fractionation shows that Pb, Mn, Cd, As, Sr, Co, V, Cu, and Ni were present mainly in the bioavailable fraction. Positive matrix factorization was used to resolve the sources of particulate trace elements into dust, oil combustion, coal combustion, and traffic-related emissions. Traffic-related emission contributed 65% of total mass of the measured elements during low pollution days. However, coal combustion dominated (58%) during severe pollution days. By combining element-specific health risk analyses and source apportionment results, we conclude that traffic-related emission dominates the health risks by particulate trace elements during low pollution days, while coal combustion becomes equally or even more important during moderate and severe pollution days.
Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Beijing , Carbón Mineral , Polvo , Monitoreo del Ambiente , Material ParticuladoRESUMEN
Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kgcoal for bituminous coals and are below 0.1 g/kgcoal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.
Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , China , Europa (Continente) , Europa Oriental , Espectrometría de Masas , Protones , Tiempo de ReacciónRESUMEN
Nonmethane organic gas emissions (NMOGs) from in-service aircraft turbine engines were investigated using a proton transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) at an engine test facility at Zurich Airport, Switzerland. Experiments consisted of 60 exhaust samples for seven engine types (used in commercial aviation) from two manufacturers at thrust levels ranging from idle to takeoff. Emission indices (EIs) for more than 200 NMOGs were quantified, and the functional group fractions (including acids, carbonyls, aromatics, and aliphatics) were calculated to characterize the exhaust chemical composition at different engine operation modes. Total NMOG emissions were highest at idling with an average EI of 7.8 g/kg fuel and were a factor of â¼40 lower at takeoff thrust. The relative contribution of pure hydrocarbons (particularly aromatics and aliphatics) of the engine exhaust decreased with increasing thrust while the fraction of oxidized compounds, for example, acids and carbonyls increased. Exhaust chemical composition at idle was also affected by engine technology. Older engines emitted a higher fraction of nonoxidized NMOGs compared to newer ones. Idling conditions dominated ground level organic gas emissions. Based on the EI determined here, we estimate that reducing idle emissions could substantially improve air quality near airports.
Asunto(s)
Contaminantes Atmosféricos , Protones , Aeronaves , Espectrometría de Masas , Tiempo de Reacción , Emisiones de VehículosRESUMEN
Secondary organic aerosol (SOA) is formed from the atmospheric oxidation of gas-phase organic compounds leading to the formation of particle mass. Gasoline- and diesel-powered motor vehicles, both on/off-road, are important sources of SOA precursors. They emit complex mixtures of gas-phase organic compounds that vary in volatility and molecular structure-factors that influence their contributions to urban SOA. However, the relative importance of each vehicle type with respect to SOA formation remains unclear due to conflicting evidence from recent laboratory, field, and modeling studies. Both are likely important, with evolving contributions that vary with location and over short time scales. This review summarizes evidence, research needs, and discrepancies between top-down and bottom-up approaches used to estimate SOA from motor vehicles, focusing on inconsistencies between molecular-level understanding and regional observations. The effect of emission controls (e.g., exhaust aftertreatment technologies, fuel formulation) on SOA precursor emissions needs comprehensive evaluation, especially with international perspective given heterogeneity in regulations and technology penetration. Novel studies are needed to identify and quantify "missing" emissions that appear to contribute substantially to SOA production, especially in gasoline vehicles with the most advanced aftertreatment. Initial evidence suggests catalyzed diesel particulate filters greatly reduce emissions of SOA precursors along with primary aerosol.
Asunto(s)
Gasolina , Emisiones de Vehículos , Aerosoles , Contaminantes Atmosféricos , Vehículos a Motor , Compuestos OrgánicosRESUMEN
Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO2+ fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO2+ signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH4NO3) causes a median CO2+ interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH4NO3, while the ammonium sulfate ((NH4)2SO4) induced interference was 3-10 times lower. Propagation of the CO2+ interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f44. The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems.
Asunto(s)
Aerosoles , Espectrometría de Masas , Carbono , Cloruro de Sodio , Cloruro de Sodio DietéticoRESUMEN
Primary biological organic aerosols (PBOA) represent a major component of the coarse organic matter (OMCOARSE, aerodynamic diameter > 2.5 µm). Although this fraction affects human health and the climate, its quantification and chemical characterization currently remain elusive. We present the first quantification of the entire PBOACOARSE mass and its main sources by analyzing size-segregated filter samples collected during the summer and winter at the rural site of Payerne (Switzerland), representing a continental Europe background environment. The size-segregated water-soluble OM was analyzed by a newly developed offline aerosol mass spectrometric technique (AMS). Collected spectra were analyzed by three-dimensional positive matrix factorization (3D-PMF), showing that PBOA represented the main OMCOARSE source during summer and its contribution to PM10 was comparable to that of secondary organic aerosol. We found substantial cellulose contributions to OMCOARSE, which in combination with gas chromatography mass spectrometry molecular markers quantification, underlined the predominance of plant debris. Quantitative polymerase chain reaction (qPCR) analysis instead revealed that the sum of bacterial and fungal spores mass represented only a minor OMCOARSE fraction (<0.1%). X-ray photoelectron spectroscopic (XPS) analysis of C and N binding energies throughout the size fractions revealed an organic N increase in the PM10 compared to PM1 consistent with AMS observations.