Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Enzyme Inhib Med Chem ; 37(1): 1556-1567, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35635148

RESUMEN

Sixteen [1, 2, 4]triazolo[4,3-a]quinoxalines as DNA intercalators-Topo II inhibitors have been prepared and their anticancer actions evaluated towards three cancer cell lines. The new compounds affected on high percentage of MCF-7. Derivatives 7e, 7c and 7b exhibited the highest anticancer activities. Their activities were higher than that of doxorubicin. Molecular docking studies showed that the HBA present in the chromophore, the substituted distal phenyl moiety and the extended linkers enable our derivatives to act as DNA binders. Also, the pyrazoline moiety formed six H-bonds and improved affinities with DNA active site. Finally, 7e, 7c and 7b exhibited the highest DNA affinities and act as traditional intercalators of DNA. The most active derivatives 7e, 7c, 7b, 7g and 6e were subjected to evaluate their Topo II inhibition and DNA binding actions. Derivative 7e exhibited the highest binding affinity. It intercalates DNA at IC50 = 29.06 µM. Moreover, compound 7e potently intercalates DNA at an IC50 value of 31.24 µM. Finally, compound 7e demonstrated the most potent Topo II inhibitor at a value of 0.890 µM. Compound 7c exhibited an equipotent IC50 value (0.940 µM) to that of doxorubicin. Furthermore, derivatives 7b, 7c, 7e and 7g displayed a high ADMET profile.


Asunto(s)
Sustancias Intercalantes , Inhibidores de Topoisomerasa II , ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Relación Dosis-Respuesta a Droga , Doxorrubicina/farmacología , Sustancias Intercalantes/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología
2.
Bioorg Med Chem ; 29: 115872, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33214036

RESUMEN

Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. Thus, nineteen new quinazoline-4(3H)-one derivatives were designed and synthesized. Preliminary cytotoxicity studies of the synthesized compounds were evaluated against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) using MTT assay method. Doxorubicin and sorafenib were used as positive controls. Five compounds were found to have promising cytotoxic activities against all cell lines. Compound 16f, containing a 2-chloro-5-nitrophenyl group, has emerged as the most active member. It was approximately 4.39-, 5.73- and 1.96-fold more active than doxorubicin and 3.88-, 5.59- and 1.84-fold more active than sorafenib against HepG2, HCT-116 and MCF-7 cells, respectively. The most active cytotoxic agents were further evaluated in vitro for their VEGFR-2 inhibitory activities. The results of in vitro VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Molecular docking of these compounds into the kinase domain, moreover, supported the results.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinonas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinazolinonas/síntesis química , Quinazolinonas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Arch Pharm (Weinheim) ; 354(7): e2000491, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33788290

RESUMEN

The anticancer activity of novel thiazolidine-2,4-diones was evaluated against HepG2, HCT-116, and MCF-7 cells. Among the tested cancer cell lines, HCT-116 was the most sensitive one to the cytotoxic effect of the new derivatives. In particular, compounds 18, 11, and 10 were found to be the most potent derivatives among all the tested compounds against the HepG2, HCT-116, and MCF-7 cancer cell lines, with IC50 values ranging from 38.76 to 53.99 µM. The most active antiproliferative derivatives (7-14 and 15-19) were subjected to further biological studies to evaluate their inhibitory potentials against VEGFR-2. The tested compounds displayed a good-to-medium inhibitory activity, with IC50 values ranging from 0.26 to 0.72 µM. Among them, compounds 18, 11, and 10 potently inhibited VEGFR-2 at IC50 values in the range of 0.26-0.29 µM, which are nearly three times that of the sorafenib IC50 value (0.10 µM). Although our derivatives showed lower activities than the reference drug, they could be useful as a template for future design, optimization, adaptation, and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs. The ADMET profile showed that compounds 18, 11, and 10 do not violate any of Lipinski's rules and have a comparable intestinal absorptivity in humans. Also, the new derivatives could not inhibit cytochrome P3A4. Unlike sorafenib and doxorubicin, compounds 18, 11, and 10 are expected to have prolonged dosing intervals. Moreover, compounds 10 and 18 displayed a wide therapeutic index and higher selectivity against cancer cells as compared with their cytotoxicity against normal cells.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Tiazolidinedionas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Células HCT116 , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Sorafenib/farmacología , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química
4.
Arch Pharm (Weinheim) ; 354(2): e2000279, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33073374

RESUMEN

The anticancer activity of novel thiazolidine-2,4-diones was evaluated against HepG2, HCT-116, and MCF-7 cells. MCF-7 was the most sensitive cell line to the cytotoxicity of the new derivatives. In particular, compounds 18, 12, 17, and 16 were found to be the most potent derivatives over all the tested compounds against the cancer cell lines HepG2, HCT116, and MCF-7, with IC50 = 9.16 ± 0.9, 8.98 ± 0.7, 5.49 ± 0.5 µM; 9.19 ± 0.5, 8.40 ± 0.7, 6.10 ± 0.4 µM; 10.78 ± 1.2, 8.87 ± 1.5, 7.08 ± 1.6 µM; and 10.87 ± 0.8, 9.05 ± 0.7, 7.32 ± 0.4 µM, respectively. Compounds 18 and 12 have nearly the same activities as sorafenib (IC50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively), against HepG2 cells, but slightly lower activity against HCT116 cells and slightly higher activity against the MCF-7 cancer cell line. Also, these compounds displayed lower activities than doxorubicin against HepG2 and HCT-116 cells but higher activity against MCF-7 cells (IC50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively). In contrast, compounds 17 and 16 exhibited lower activities than sorafenib against HepG2 and HCT116 cells, but nearly equipotent activity against the MCF-7 cancer cell line. Also, these compounds displayed lower activities than doxorubicin against the three cell lines. All the synthesized derivatives 7-18 were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to medium inhibitory activity, with IC50 values ranging from 0.17 ± 0.02 to 0.27 ± 0.03 µM. Compounds 18, 12, 17, and 16 potently inhibited VEGFR-2 at IC50 values of 0.17 ± 0.02, 0.17 ± 0.02, 0.18 ± 0.02, and 0.18 ± 0.02 µM, respectively, which are nearly more than half of that of the IC50 value for sorafenib (0.10 ± 0.02 µM).


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/farmacología , Tiazolidinedionas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Bioorg Chem ; 105: 104399, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33113414

RESUMEN

In view of their DNA intercalation activities as anticancer agents, novel twenty four [1,2,4]triazolo[4,3-a]quinoxaline derivatives have been designed, synthesized and evaluated against HepG2, HCT-116 and MCF-7 as DNA intercalators and Top II enzyme inhibitors. The data obtained from molecular modeling studies revealed that, our small aromatic molecules were concluded to act through two ways firstly, through non-covalent interaction with the directly bound proteins to DNA hence inhibit topoisomerase-II enzyme. The second is through non-covalently binding to double helical structures of DNA either by intercalating binder as in compounds 10a and 11d or by minor groove binding as in compounds 8e and 8c. Cytotoxic activity indicated that MCF-7 and HepG2 were the most sensitive cell lines to the influence of the new derivatives respectively. In particular, compounds 10a, 11d and 8e were found to be the most potent derivatives overall the tested compounds against the three HepG2, HCT116 and MCF-7 cancer cell lines with IC50 = (4.55 ± 0.3, 6.18 ± 0.8 and 3.93 ± 0.6 µM), (5.61 ± 0.5, 6.49 ± 0.5and 3.71 ± 0.3 µM) and (4.66 ± 0.3, 8.08 ± 0.8 and 5.11 ± 0.7 µM) respectively. The three derivatives exhibited higher activities than doxorubicin, (IC50 = 7.94 ± 0.6, 8.07 ± 0.8 and 6.75 ± 0.4 µM respectively), against HepG2 and MCF-7 but 8e exhibited nearly the same activity against HCT116 cancer cell lines respectively. The most active derivatives 8a-e, 10a,b, 11b-e, 13a and 14b,c were evaluated for their DNA binding activities. The tested compounds displayed very good to moderate DNA-binding affinities. Compounds 10a 11d, 8e, 8c, 8a and 8b displayed the highest binding affinities. These compounds potently intercalate DNA at decreased IC50 values of 25.27 ± 1.2, 27.47 ± 2.1, 27.54 ± 3.2, 27.78 ± 1.3, 29.15 ± 1.8 and 30.23 ± 3.7 µM respectively, which were less than that of doxorubicin (31.27 ± 1.8). Furthermore, the most active cytotoxic compounds 8a, 8b, 8c, 8e, 10a and 11d were selected to evaluate their inhibitory activities against Topo II enzyme. All the tested compounds could interfere with the Topo II activity. They exhibited very good inhibitory activities with IC50 values ranging from 0.379 ± 0.07 to 0.813 ± 0.14 µM that were lower than that of doxorubicin (IC50 = 0.94 ± 0.4 µM). For a great extent, the reported results were in agreement with that of in vitro cytotoxicity activity, DNA binding and molecular modeling studies.


Asunto(s)
Antineoplásicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , ADN/química , Sustancias Intercalantes/farmacología , Simulación del Acoplamiento Molecular , Quinoxalinas/farmacología , Inhibidores de Topoisomerasa II/farmacología , Triazoles/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/química , Estructura Molecular , Quinoxalinas/síntesis química , Quinoxalinas/química , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química , Triazoles/síntesis química , Triazoles/química , Células Tumorales Cultivadas
6.
Bioorg Chem ; 102: 104059, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32653608

RESUMEN

Novel series of 5-benzylidenethiazolidine-2,4-dione derivatives 4a-c-8a-f were designed, synthesized and evaluated for anticancer activity against HepG2, HCT-116 and MCF-7 cell lines. MCF-7 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 8f was found to be the most potent derivative overall the tested compounds against the three HepG2, HCT116 and MCF-7 cancer cell lines with IC50 = 11.19 ± 0.8, 8.99 ± 0.7 and 7.10 ± 0.4 µM respectively. Compound 8f exhibited lower activity than sorafenib, (IC50 = 9.18 ± 0.6, 8.37 ± 0.7 and 5.10 ± 0.4 µM respectively), against HepG2 and HCT116 but exhibited nearly the same activity against MCF-7 cancer cell lines respectively. Also, this compound displayed lower activity than doxorubicin, (IC50 = 7.94 ± 0.6, 8.07 ± 0.8 and 6.75 ± 0.4 µM respectively), against HepG2 and HCT116 but nearly the same activity against MCF-7cell lines respectively. The most active derivatives 6c,d,f,g and 8a-f were evaluated for their inhibitory activities against VEGFR-2. The elongation of the structures to have distal moieties enhanced anticancer and VEGFR-2 inhibitory activities as in compounds 8a-f. Among them, compounds 8f was found to be the most potent derivative that inhibited VEGFR-2 at IC50 value of 0.22 ± 0.02 µM, which is nearly the half as that of sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular design was performed to investigate their binding mode and affinities towards VEGFR-2 receptor. The data obtained from docking studies were highly correlated with that obtained from the biological screening.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Tiazolidinedionas/síntesis química , Tiazolidinedionas/uso terapéutico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/efectos de los fármacos , Diseño de Fármacos , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tiazolidinedionas/farmacología
7.
Bioorg Chem ; 105: 104380, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33128967

RESUMEN

Sixteen novel quinazoline-based derivatives were designed and synthesized via modification of the VEGFR-2 reported inhibitor 7 in order to increase the binding affinity of the designed compounds to the receptor active site. The designed compounds were evaluated for their VEGFR-2 inhibitory effects. Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. The bioactivity of the new compounds was performed against HepG-2, MCF-7 and HCT-116 cell lines. Doxorubicin and sorafenib were used as positive controls. Compound 18d was observed to have promising cytotoxic activity (IC50 = 3.74 ± 0.14, 5.00 ± 0.20 and 6.77 ± 0.27 µM) in comparison to the reference drug doxorubicin (IC50 = 8.28, 9.63 and 7.67 µM) and sorafenib (IC50 = 7.31, 9.40 and 7.21 µM). The most active compounds were tested for their in vitro VEGFR-2 inhibitory activities. Results of VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Thus, compound 18d showed VEGFR-2 inhibitory activity (IC50 = 0.340 ± 0.04 µM) superior to that of the reference drug, sorafenib (IC50 = 0.588 ± 0.06 µM). Furthermore, docking study was performed in order to understand the binding pattern of the new compounds into VEGFR-2 active site. Docking results attributed the potent VEGFR-2 inhibitory effect of the new compounds as they bound to the key amino acids in the active site, Glu883 and Asp1044, as well as their hydrophobic interaction with the receptor hydrophobic pocket. Results of cytotoxic activities, in vitro VEGFR-2 inhibition together with docking study argument the advantages of the synthesized analogues as promising anti-angiogenic agents.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinonas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinazolinonas/síntesis química , Quinazolinonas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
8.
Bioorg Chem ; 103: 104233, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32882440

RESUMEN

Herein we report the design and synthesis of a new series of phthalazine derivatives as Topo II inhibitors and DNA intercalators. The synthesized compounds were in vitro evaluated for their cytotoxic activities against HepG-2, MCF-7 and HCT-116 cell lines. Additionally, Topo II inhibitory activity and DNA intercalating affinity were investigated for the most active compounds as a potential mechanism for the anticancer activity. Compounds 15h, 23c, 32a, 32b, and 33 exhibited the highest activities against Topo II with IC50 ranging from 5.44 to 8.90 µM, while compounds 27 and 32a were found to be the most potent DNA binders at IC50 values of 36.02 and 48.30 µM, respectively. Moreover, compound 32a induced apoptosis in HepG-2 cells and arrested the cell cycle at the G2/M phase. Besides, compound 32a showed Topo II poisoning effect at concentrations of 2.5 and 5 µM, and Topo II catalytic inhibitory effect at a concentration of10 µM. In addition, compound 32b showed in vivo a significant tumor growth inhibition effect. Furthermore, molecular docking studies were carried out against DNA-Topo II complex and DNA to investigate the binding patterns of the designed compounds.


Asunto(s)
Antineoplásicos/uso terapéutico , Sustancias Intercalantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Ftalazinas/uso terapéutico , Inhibidores de Topoisomerasa II/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Sustancias Intercalantes/síntesis química , Sustancias Intercalantes/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Ftalazinas/síntesis química , Ftalazinas/metabolismo , Unión Proteica , Ratas , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/metabolismo
9.
Arch Pharm (Weinheim) ; 353(8): e2000068, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32510731

RESUMEN

A novel series of 1-benzylquinazoline-2,4(1H,3H)-dione derivatives, 6a,b to 11a-e, was designed, synthesized, and evaluated for their anticancer activity against HepG2, HCT-116, and MCF-7 cells. Compounds 11b, 11e, and 11c were found to be the most potent derivatives of all tested compounds against the HepG2, HCT-116, and MCF-7 cancer cell lines, with GI50 = 9.16 ± 0.8, 5.69 ± 0.4, 5.27 ± 0.2 µM, 9.32 ± 0.9, 6.37 ± 0.7, 5.67 ± 0.5 µM, and 9.39 ± 0.5, 6.87 ± 0.7, 5.80 ± 0.4 µM, respectively. These compounds exhibited nearly the same activity as sorafenib against HepG2 and HCT-116 cells and a higher activity against MCF-7 cells (GI50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively). Also, these compounds displayed a lower activity than doxorubicin against HepG2 cells and a higher activity against HCT-116 and MCF-7 cells (GI50 = 7.94 ± 0.6, 8.07 ± 0.8, and 6.75 ± 0.4 µM, respectively). The most active antiproliferative derivatives, 6a,b, 8, 9, and 11a-e, were selected to evaluate their enzymatic inhibitory activity against VEGFR-2. Compounds 11b, 11e, and 11c potently inhibited VEGFR-2 at IC50 values of 0.12 ± 0.02, 0.12 ± 0.02, and 0.13 ± 0.02 µM, respectively, which are nearly equipotent as sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR-2 active site.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Mol Divers ; 23(2): 283-298, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30168051

RESUMEN

In view of the anticonvulsant activity reported for phthalazine derivatives as non-competitive AMPA receptor antagonists, a new series of phthalazine-1,4-diones (2-12) were designed and synthesized. The neurotoxicity was assessed using rotarod test. The molecular docking was performed for the synthesized compounds to assess their binding affinities toward AMPA receptor as non-competitive antagonists. The molecular modeling data were strongly interrelated to biological screening data. Compounds 8, 7b, 7a, 10 and 3a exhibited the highest binding affinities as non-competitive AMPA receptor antagonists and also showed the highest relative potencies of 1.78, 1.66, 1.60, 1.59 and 1.29, respectively, as anticonvulsants in comparison with diazepam. The most active compounds 8, 7b, 7a, 10 and 3a were further tested against maximal electroshock seizure (MES). Compounds 8 and 7b and 3a showed 100% protection at a dose level of 125 µgm/kg, while compounds 7a and 10 exhibited 83.33% protection at the same dose level. These agents exerted low neurotoxicity and high safety margin in comparison with valproate as a reference drug. Most of our designed compounds exhibited good ADMET profile.


Asunto(s)
Anticonvulsivantes , Ftalazinas , Receptores AMPA/antagonistas & inhibidores , Animales , Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/toxicidad , Diseño de Fármacos , Electrochoque , Ratones , Modelos Biológicos , Simulación del Acoplamiento Molecular , Ftalazinas/química , Ftalazinas/farmacocinética , Ftalazinas/uso terapéutico , Ftalazinas/toxicidad , Convulsiones/tratamiento farmacológico , Relación Estructura-Actividad
11.
Arch Pharm (Weinheim) ; 352(10): e1900113, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31448458

RESUMEN

Novel series of benzoxazoles 4a-f -16 were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT-116, and MCF-7 cells. HCT-116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 5e was found to be the most potent against HepG2, HCT-116, and MCF-7 with IC50 = 4.13 ± 0.2, 6.93 ± 0.3, and 8.67 ± 0.5 µM, respectively. Compounds 5c , 5f , 6b , 5d , and 6c showed the highest anticancer activities against HepG2 cells with IC50 of 5.93 ± 0.2, 6.58 ± 0.4, 8.10 ± 0.7, 8.75 ± 0.7, and 9.95 ± 0.9 µM, respectively; HCT-116 cells with IC50 of 7.14 ± 0.4, 9.10 ± 0.8, 7.91 ± 0.6, 9.52 ± 0.5, and 12.48 ± 1.1 µM, respectively; and MCF-7 cells with IC50 of 8.93 ± 0.6, 10.11 ± 0.9, 12.31 ± 1.0, 9.95 ± 0.8, and 15.70 ± 1.4 µM, respectively, compared with sorafenib as a reference drug with IC50 of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 5c-f and 6b,c were further evaluated for their vascular endothelial growth factor receptor-2 (VEGFR-2) inhibition. Compounds 5e and 5c potently inhibited VEGFR-2 at lower IC50 values of 0.07 ± 0.01 and 0.08 ± 0.01 µM, respectively, compared with sorafenib (IC50 = 0.1 ± 0.02 µM). Compound 5f potently inhibited VEGFR-2 at low IC50 value (0.10 ± 0.02 µM) equipotent to sorafenib. Our design was based on the essential pharmacophoric features of the VEGFR-2 inhibitor sorafenib. Molecular docking was performed for all compounds to assess their binding pattern and affinity toward the VEGFR-2 active site.


Asunto(s)
Antineoplásicos/síntesis química , Benzoxazoles/síntesis química , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Benzoxazoles/química , Benzoxazoles/farmacología , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HCT116 , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
12.
Arch Pharm (Weinheim) ; 352(12): e1900178, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31596514

RESUMEN

A novel series of benzoxazole/benzothiazole derivatives 4a-c-11a-e were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT-116, and MCF-7 cells. HCT-116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 4c was found to be the most potent derivative against HepG2, HCT-116, and MCF-7 cells, with IC50 values = 9.45 ± 0.8, 5.76 ± 0.4, and 7.36 ± 0.5 µM, respectively. Compounds 4b, 9f, and 9c showed the highest anticancer activities against HepG2 cells with IC50 values of 9.97 ± 0.8, 9.99 ± 0.8, and 11.02 ± 1.0 µM, respectively, HCT-116 cells with IC50 values of 6.99 ± 0.5, 7.44 ± 0.4, and 8.15 ± 0.8 µM, respectively, and MCF-7 cells with IC50 values of 7.89 ± 0.7, 8.24 ± 0.7, and 9.32 ± 0.7 µM, respectively, in comparison with sorafenib as reference drug with IC50  values of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 4a-c, 9b,c,e,f,h, and 11c,e were further evaluated for their VEGFR-2 inhibition. Compounds 4c and 4b potently inhibited VEGFR-2 at IC50 values of 0.12 ± 0.01 and 0.13 ± 0.02 µM, respectively, which are nearly equipotent to the sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR-2 active site.


Asunto(s)
Antineoplásicos/síntesis química , Benzoxazoles/química , Diseño de Fármacos , Tiadiazoles/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Células HCT116 , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
13.
Arch Pharm (Weinheim) ; 352(5): e1800387, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30989729

RESUMEN

A new series of 2-substituted-2,3-dihydrophthalazine-1,4-diones (2- 9) were designed and synthesized to evaluate their anticonvulsant activity. The neurotoxicity was assessed using the rotarod test. Molecular docking was performed for the synthesized compounds to assess their binding affinities as γ-aminobutyric acid A (GABA-A) receptor agonists as a possible mechanism of their anticonvulsant action, to rationalize their anticonvulsant activity in a qualitative way. The data obtained from the molecular modeling was strongly matched with that obtained from the biological screening, which revealed that compounds 5a , 9b , and 9h showed the highest binding affinities toward the GABA-A receptor and also showed the highest anticonvulsant activities with relative potencies of 1.66, 1.63, and 1.61, respectively, compared with diazepam. The most active compounds 5a , 9b , and 9h were further tested against maximal electroshock seizures. Compounds 5a and 9b showed 100% protection at a dose level of 125 µg/kg, while compound 9h exhibited 83.33% protection at the same dose level. A GABA enzymatic assay was performed for these highly active compounds to confirm the obtained results and to explain the possible mechanism for their anticonvulsant action. These agents exerted low neurotoxicity and a high safety margin compared with valproate as a reference drug. Most of our designed compounds exhibited a good ADMET profile.


Asunto(s)
Anticonvulsivantes/farmacología , Diseño de Fármacos , Agonistas de Receptores de GABA-A/farmacología , Ftalazinas/farmacología , Receptores de GABA-A/metabolismo , Animales , Anticonvulsivantes/síntesis química , Anticonvulsivantes/química , Simulación por Computador , Relación Dosis-Respuesta a Droga , Agonistas de Receptores de GABA-A/síntesis química , Agonistas de Receptores de GABA-A/química , Modelos Moleculares , Estructura Molecular , Ftalazinas/síntesis química , Ftalazinas/química , Ratas , Ratas Wistar , Relación Estructura-Actividad
14.
Arch Pharm (Weinheim) ; 350(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29131379

RESUMEN

Novel series of phthalazine derivatives 6-11 were designed, synthesized, and evaluated for their anticancer activity against two human tumor cell lines, HCT-116 human colon adenocarcinoma and MCF-7 breast cancer cells, targeting the VEGFR-2 enzyme. Compounds 7a,b and 8b,c showed the highest anticancer activities against both HCT116 human colon adenocarcinoma cells with IC50 of 6.04 ± 0.30, 13.22 ± 0.22, 18 ± 0.20, and 35 ± 0.45 µM, respectively, and MCF-7 breast cancer cells with IC50 of 8.8 ± 0.45, 17.9 ± 0.50, 25.2 ± 0.55, and 44.3 ± 0.49 µM, respectively, in comparison to sorafenib as reference drug with IC50 of 5.47 ± 0.3 and 7.26 ± 0.3 µM, respectively. Eleven compounds in this series were further evaluated for their inhibitory activity against VEGFR-2, where compounds 7a, 7b, 8c, and 8b also showed the highest VEGFR-2 inhibition with IC50 of 0.11 ± 0.01, 0.31 ± 0.03, 0.72 ± 0.08, and 0.91 ± 0.08 µM, respectively, in comparison to sorafenib as reference ligand with IC50 of 0.1 ± 0.02. Furthermore, molecular docking studies were performed for all synthesized compounds to predict their binding pattern and affinity towards the VEGFR-2 active site, in order to rationalize their anticancer activity in a qualitative way.


Asunto(s)
Antineoplásicos/farmacología , Ftalazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Diseño de Fármacos , Femenino , Células HCT116 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Simulación del Acoplamiento Molecular , Ftalazinas/síntesis química , Ftalazinas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
15.
Anticancer Agents Med Chem ; 18(8): 1184-1196, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29651967

RESUMEN

BACKGROUND: Extensive studies were reported in the synthesis of several phthalazine derivatives as promising anticancer agents as potent VEGFR-2 inhibitors. Vatalanib (PTK787) was the first anilinophthalazine published derivative as a potent inhibitor of VEGFR. The discovery of vatalanib as a clinical candidate led to the design and synthesis of different anilinophthalazine derivatives as potent inhibitors for VEGFR-2. The objective of present research work is the synthesis of new agents with the same essential pharmacophoric features of the reported and clinically used VEGFR-2 inhibitors (e.g vatalanib and sorafenib). The main core of our molecular design rationale comprised bioisosteric modification strategies of VEGFR-2 inhibitors at four different positions. MATERIAL AND METHODS: A correlation between structure and biological activity of our designed phthalazines was established using molecular docking and VEGFR-2 kinase assay. RESULTS AND DISCUSSION: In view of their expected anticancer activity, novel triazolo[3,4-a]phthalazine derivatives 5-6a-o and 3-substituted-bis([1,2,4]triazolo)[3,4-a:4',3'-c]phthalazines 9a-b were designed, synthesized and evaluated for their anti-proliferative activity against two human tumor cell lines HCT-116 human colon adenocarcinoma and MCF-7 breast cancer. It was found that, compound 6o the most potent derivative against both HCT116 and MCF-7 cancer cell lines. Compounds 6o, 6m, 6d and 9b showed the highest anticancer activities against HCT116 human colon adenocarcinoma with IC50 of 7±0.06, 13±0.11, 15±0.14 and 23±0.22 µM respectively while compounds 6o, 6d, 6a and 6n showed the highest anticancer activities against MCF-7 breast cancer with IC50 of 16.98±0.15, 18.2±0.17, 57.54±0.53 and 66.45±0.67 µM respectively. Sorafenib as a highly potent VEGFR-2 inhibitor was used as a reference drug with IC50 of 5.47±0.3 and 7.26±0.3 µM respectively. Nine compounds were further evaluated for their VEGFR-2 inhibitory activity. Compounds 6o, 6m, 6d and 9b emerged as the most active counterparts against VEGFR-2 with IC50 values of 0.1±0.01, 0.15±0.02, 0.28±0.03 and 0.38±0.04 µM, respectively comparable to that of sorafenib (IC50 = 0.1±0.02) µM. Furthermore, molecular docking studies were carried out for all synthesized compounds to investigate their binding pattern and predict their binding affinities towards VEGFR-2 active site. In silico ADMET studies were calculated for the tested compounds. Most of our designed compounds exhibited good ADMET profile. CONCLUSION: The obtained results showed that, the most active compounds could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Ftalazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Triazoles/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Células MCF-7 , Estructura Molecular , Ftalazinas/síntesis química , Ftalazinas/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA