Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 16(2): 1299-307, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26812480

RESUMEN

The development of bacterial strains that are resistant to multiple antibiotics has urged the need for new antibacterial therapies. An exciting approach to fight bacterial diseases is the use of antiadhesive agents capable to block the adhesion of the pathogens to host tissues, the first step of infection. We report the use of a novel atomic force microscopy (AFM) platform for quantifying the activity of antiadhesion compounds directly on living bacteria, thus without labeling or purification. Novel fullerene-based mannoconjugates bearing 10 carbohydrate ligands and a thiol bond were efficiently prepared. The thiol functionality could be exploited as a convenient handle to graft the multimeric species onto AFM tips. Using a combination of single-molecule and single-cell AFM assays, we demonstrate that, unlike mannosidic monomers, multivalent glycofullerenes strongly block the adhesion of uropathogenic Escherichia coli bacteria to their carbohydrate receptors. We expect that the nanoscopy technique developed here will help designing new antiadhesion drugs to treat microbial infections, including those caused by multidrug resistant organisms.


Asunto(s)
Antibacterianos/química , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Nanopartículas/química , Antibacterianos/uso terapéutico , Bacterias/patogenicidad , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Microscopía de Fuerza Atómica , Nanopartículas/uso terapéutico , Compuestos de Sulfhidrilo/química
2.
J Biol Chem ; 290(14): 9002-19, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25666624

RESUMEN

P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Streptococcus mutans/metabolismo , Adhesión Bacteriana , Secuencia de Bases , Western Blotting , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Microscopía de Fuerza Atómica , Reacción en Cadena de la Polimerasa , Streptococcus mutans/fisiología , Resonancia por Plasmón de Superficie
3.
Mol Microbiol ; 93(2): 356-68, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24898289

RESUMEN

SdrG is a cell surface adhesin from Staphylococcus epidermidis which binds to the blood plasma protein fibrinogen (Fg). Ligand binding follows a 'dock, lock and latch' model involving dynamic conformational changes of the adhesin that result in a greatly stabilized adhesin-ligand complex. To date, the force and dynamics of this multistep interaction are poorly understood. Here we use atomic force microscopy (AFM) to unravel the binding strength and cell surface localization of SdrG at molecular resolution. Single-cell force spectroscopy shows that SdrG mediates time-dependent attachment to Fg-coated surfaces. Single-molecule force spectroscopy with Fg-coated AFM tips demonstrates that the adhesin forms nanoscale domains on the cell surface, which we believe contribute to strengthen cell adhesion. Notably, we find that the rupture force of single SdrG-Fg bonds is very large, ∼ 2 nN, equivalent to the strength of a covalent bond, and shows a low dissociation rate, suggesting that the bond is very stable. The strong binding force, slow dissociation and clustering of SdrG provide a molecular foundation for the ability of S. epidermidis to colonize implanted biomaterials and to withstand physiological shear forces.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Fibrinógeno/metabolismo , Staphylococcus epidermidis/metabolismo , Adhesión Bacteriana/fisiología , Ligandos , Microscopía de Fuerza Atómica , Unión Proteica , Análisis de la Célula Individual
4.
J Bacteriol ; 196(15): 2775-88, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24837291

RESUMEN

The localization of the LapA protein to the cell surface is a key step required by Pseudomonas fluorescens Pf0-1 to irreversibly attach to a surface and form a biofilm. LapA is a member of a diverse family of predicted bacterial adhesins, and although lacking a high degree of sequence similarity, family members do share common predicted domains. Here, using mutational analysis, we determine the significance of each domain feature of LapA in relation to its export and localization to the cell surface and function in biofilm formation. Our previous work showed that the N terminus of LapA is required for cleavage by the periplasmic cysteine protease LapG and release of the adhesin from the cell surface under conditions unfavorable for biofilm formation. We define an additional critical region of the N terminus of LapA required for LapG proteolysis. Furthermore, our results suggest that the domains within the C terminus of LapA are not absolutely required for biofilm formation, export, or localization to the cell surface, with the exception of the type I secretion signal, which is required for LapA export and cell surface localization. In contrast, deletion of the central repetitive region of LapA, consisting of 37 repeats of 100 amino acids, results in an inability to form a biofilm. We also used single-molecule atomic force microscopy to further characterize the role of these domains in biofilm formation on hydrophobic and hydrophilic surfaces. These studies represent the first detailed analysis of the domains of the LapA family of biofilm adhesin proteins.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Lectinas/metabolismo , Pseudomonas fluorescens/fisiología , Adhesinas Bacterianas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biología Computacional , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Lectinas/genética , Microscopía de Fuerza Atómica , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteolisis , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crecimiento & desarrollo , Análisis de Secuencia de ADN , Eliminación de Secuencia
5.
Mol Microbiol ; 89(4): 649-59, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23796134

RESUMEN

Trimeric autotransporter adhesins (TAAs) are bacterial surface proteins that fulfil important functions in pathogenic Gram-negative bacteria. Prominent examples of TAAs are found in Burkholderia cepacia complex, a group of bacterial species causing severe infections in patients with cystic fibrosis. While there is strong evidence that Burkholderia cenocepacia TAAs mediate adhesion, aggregation and colonization of the respiratory epithelium, we still know very little about the molecular mechanisms behind these interactions. Here, we use single-molecule atomic force microscopy to unravel the binding mechanism of BCAM0224, a prototype TAA from B. cenocepacia K56-2. We show that the adhesin forms homophilic trans-interactions engaged in bacterial aggregation, and that it behaves as a spring capable to withstand high forces. We also find that BCAM0224 binds collagen, a major extracellular component of host epithelia. Both homophilic and heterophilic interactions display low binding affinity, which could be important for epithelium colonization. We then demonstrate that BCAM0224 recognizes receptors on living pneumocytes, and leads to the formation of membrane tethers that may play a role in promoting adhesion. Collectively, our results show that BCAM0224 is a multifunctional adhesin endowed with remarkable binding properties, which may represent a general mechanism among TAAs for strengthening bacterial adhesion.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/ultraestructura , Adhesión Bacteriana , Burkholderia cenocepacia/fisiología , Células Epiteliales Alveolares/microbiología , Línea Celular , Colágeno/metabolismo , Humanos , Microscopía de Fuerza Atómica , Unión Proteica , Multimerización de Proteína
6.
Antimicrob Agents Chemother ; 58(8): 4476-85, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24867971

RESUMEN

We characterized two additional membrane transporters (Fur4p and Dal4p) of the nucleobase cation symporter 1 (NCS1) family involved in the uptake transport of pyrimidines and related molecules in the opportunistic pathogenic yeast Candida lusitaniae. Simple and multiple null mutants were constructed by gene deletion and genetic crosses. The function of each transporter was characterized by supplementation experiments, and the kinetic parameters of the uptake transport of uracil were measured using radiolabeled substrate. Fur4p specifically transports uracil and 5-fluorouracil. Dal4p is very close to Fur4p and transports allantoin (glyoxyldiureide). Deletion of the FUR4 gene confers resistance to 5-fluorouracil as well as cross-resistance to triazoles and imidazole antifungals when they are used simultaneously with 5-fluorouracil. However, the nucleobase transporters are not involved in azole uptake. Only fluorinated pyrimidines, not pyrimidines themselves, are able to promote cross-resistance to azoles by both the salvage and the de novo pathway of pyrimidine synthesis. A reinterpretation of the data previously obtained led us to show that subinhibitory doses of 5-fluorocytosine, 5-fluorouracil, and 5-fluorouridine also were able to trigger resistance to fluconazole in susceptible wild-type strains of C. lusitaniae and of different Candida species. Our results suggest that intracellular fluorinated nucleotides play a key role in azole resistance, either by preventing azoles from targeting the lanosterol 14-alpha-demethylase or its catalytic site or by acting as a molecular switch for the triggering of efflux transport.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Proteínas Fúngicas/genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas de Transporte de Nucleobases/genética , Proteínas de Transporte de Nucleótidos/genética , Azoles/farmacología , Transporte Biológico , Candida/genética , Candida/metabolismo , Cruzamientos Genéticos , Antagonismo de Drogas , Farmacorresistencia Fúngica , Flucitosina/farmacología , Fluorouracilo/farmacología , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Proteínas de Transporte de Nucleobases/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Uracilo/farmacología , Uridina/análogos & derivados , Uridina/farmacología
7.
J Cell Sci ; 125(Pt 18): 4189-95, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23077172

RESUMEN

Living cells use cell surface proteins, such as mechanosensors, to constantly sense and respond to their environment. However, the way in which these proteins respond to mechanical stimuli and assemble into large complexes remains poorly understood at the molecular level. In the past years, atomic force microscopy (AFM) has revolutionized the way in which biologists analyze cell surface proteins to molecular resolution. In this Commentary, we discuss how the powerful set of advanced AFM techniques (e.g. live-cell imaging and single-molecule manipulation) can be integrated with the modern tools of molecular genetics (i.e. protein design) to study the localization and molecular elasticity of individual mechanosensors on the surface of living cells. Although we emphasize recent studies on cell surface proteins from yeasts, the techniques described are applicable to surface proteins from virtually all organisms, from bacteria to human cells.


Asunto(s)
Membrana Celular/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Microscopía de Fuerza Atómica/métodos , Animales , Fenómenos Biomecánicos , Humanos , Imagenología Tridimensional
8.
Nanoscale ; 16(10): 5383-5394, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38375749

RESUMEN

Antifungal resistance has become a very serious concern, and Candida albicans is considered one of the most opportunistic fungal pathogens responsible for several human infections. In this context, the use of new antifungal agents such as zinc-based layered double hydroxides to fight such fungal pathogens is considered one possible means to help limit the problem of antifungal resistance. In this study, we show that ZnAl LDH nanoparticles exhibit remarkable antifungal properties against C. albicans and cause serious cell wall damage, as revealed by growth tests and atomic force microscopy (AFM) imaging. To further link the antifungal activity of ZnAl LDHs to their adhesive behaviors toward C. albicans cells, AFM-based single-cell spectroscopy and single-particle force spectroscopy were used to probe the nanoscale adhesive interactions. The force spectroscopy analysis revealed that antimicrobial ZnAl LDHs exhibit specific surface interactions with C. albicans cells, demonstrating remarkable force magnitudes and adhesion frequencies in comparison with non-antifungal negative controls, e.g., Al-coated substrates and MgAl LDHs, which showed limited interactions with C. albicans cells. Force signatures suggest that such adhesive interactions may be attributed to the presence of agglutinin-like sequence (Als) adhesive proteins at the cell wall surface of C. albicans cells. Our findings propose the presence of a strong correlation between the antifungal effect provided by ZnAl LDHs and their nanoscale adhesive interactions with C. albicans cells at both the single-cell and single-particle levels. Therefore, ZnAl LDHs could interact with C. albicans fungal pathogens by specific adhesive interactions through which they adhere to fungal cells, leading to their damage and subsequent growth inhibition.


Asunto(s)
Antifúngicos , Candida albicans , Compuestos de Zinc , Humanos , Antifúngicos/farmacología , Hidróxidos/farmacología , Hidróxidos/química , Zinc/farmacología , Zinc/química , Análisis Espectral
9.
Biophys J ; 104(9): 1886-92, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23663831

RESUMEN

Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria.


Asunto(s)
Lactobacillus plantarum/ultraestructura , Microscopía de Fuerza Atómica/métodos , Probióticos , Análisis de la Célula Individual/métodos
10.
Biophys J ; 105(3): 620-9, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23931310

RESUMEN

Peptidoglycan hydrolases are bacterial secreted enzymes that cleave covalent bonds in the cell-wall peptidoglycan, thereby fulfilling major physiological functions during cell growth and division. Although the molecular structure and functional roles of these enzymes have been widely studied, the molecular details underlying their interaction with peptidoglycans remain largely unknown, mainly owing to the paucity of appropriate probing techniques. Here, we use atomic force microscopy to explore the binding mechanism of the major autolysin Acm2 from the probiotic bacterium Lactobacillus plantarum. Atomic force microscopy imaging shows that incubation of bacterial cells with Acm2 leads to major alterations of the cell-surface nanostructure, leading eventually to cell lysis. Single-molecule force spectroscopy demonstrates that the enzyme binds with low affinity to structurally different peptidoglycans and to chitin, and that glucosamine in the glycan chains is the minimal binding motif. We also find that Acm2 recognizes mucin, the main extracellular component of the intestinal mucosal layer, thereby suggesting that this enzyme may also function as a cell adhesion molecule. The binding mechanism (low affinity and broad specificity) of Acm2 may represent a generic mechanism among cell-wall hydrolases for guiding cell division and cell adhesion.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lactobacillus plantarum/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Quitina/metabolismo , Glucosamina/metabolismo , Microscopía de Fuerza Atómica , N-Acetil Muramoil-L-Alanina Amidasa/química , Polisacáridos Bacterianos/metabolismo , Unión Proteica , Especificidad por Sustrato
11.
Langmuir ; 29(42): 13018-22, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24111821

RESUMEN

Cell surface proteins of bacteria play essential roles in mediating the attachment of pathogens to host tissues and, therefore, represent key targets for anti-adhesion therapy. In the opportunistic pathogen Staphylococcus epidermidis , the adhesion protein SdrG mediates attachment of bacteria to the blood plasma protein fibrinogen (Fg) through a binding mechanism that is not yet fully understood. We report the direct measurement of the forces driving the adhesion of S. epidermidis to Fg-coated substrates using single-cell force spectroscopy. We found that the S. epidermidis -Fg adhesion force is of ~150 pN magnitude and that the adhesion strength and adhesion probability strongly increase with the interaction time, suggesting that the adhesion process involves time-dependent conformational changes. Control experiments with mutant bacteria lacking SdrG and substrates coated with the Fg ß(6-20) peptide, instead of the full Fg protein, demonstrate that these force signatures originate from the rupture of specific bonds between SdrG and its peptide ligand. Collectively, our results are consistent with a dynamic, multi-step ligand-binding mechanism called "dock, lock, and latch".


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Fibrinógeno/química , Fibrinógeno/metabolismo , Staphylococcus epidermidis/química , Staphylococcus epidermidis/metabolismo , Tamaño de la Partícula , Staphylococcus epidermidis/citología , Propiedades de Superficie
12.
Colloids Surf B Biointerfaces ; 226: 113324, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146477

RESUMEN

The Gram-positive bacterium Staphylococcus epidermidis is responsible for important nosocomial infections. With the continuous emergence of antibiotic-resistant strains, the search for new treatments has been amplified in the last decades. A potential candidate against multidrug-resistant bacteria is squalamine, a natural aminosterol discovered in dogfish sharks. Despite its broad-spectrum efficiency, little is known about squalamine mode of action. Here, we used atomic force microscopy (AFM) imaging to decipher the effect of squalamine on S. epidermidis morphology, revealing the peptidoglycan structure at the bacterial surface after the drug action. Single-molecule force spectroscopy with squalamine-decorated tips shows that squalamine binds to the cell surface via the spermidine motif, most likely through electrostatic interactions between the amine groups of the molecule and the negatively-charged bacterial cell wall. We demonstrated that - although spermidine is sufficient for the initial attachment of squalamine to S. epidermidis - the integrity of the molecule needs to be conserved for its antimicrobial action. A deeper analysis of the AFM force-distance signatures suggests the implication of the accumulation-associated protein (Aap), one of the main adhesins of S. epidermidis, in the initial binding of squalamine to the bacterial cell wall. This work highlights that AFM -combined with microbiological assays at the bacterial suspension scale- is a valuable approach to better understand the molecular mechanisms behind the efficiency of squalamine antibacterial activity.


Asunto(s)
Espermidina , Staphylococcus epidermidis , Microscopía de Fuerza Atómica , Espermidina/farmacología , Adhesinas Bacterianas
13.
Colloids Surf B Biointerfaces ; 217: 112623, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35714507

RESUMEN

Infections by pathogenic bacteria have been threatening several fields as food industries, agriculture, textile industries and healthcare products. Layered double hydroxides materials (LDHs), also called anionic clays, could be utilized as efficient antibacterial materials due to their several interesting properties such as ease of synthesis, tunable chemical composition, biocompatibility and anion exchange capacity. Pristine LDHs as well as LDH-composites including antibacterial molecules and nanoparticles loaded-LDHs were proven to serve as efficient antibacterial agents against various Gram-positive and Gram-negative bacterial strains. The achieved antibacterial effect was explained by the following mechanisms: (1) Direct contact between the materials and bacterial cells driven by electrostatic interactions between positively charged layers and negatively charged cell membranes, (2) Dissolution and gradual release over time of metallic ions or antibacterial molecules, (3) Generation of reactive oxygen species.


Asunto(s)
Antibacterianos , Hidróxidos , Antibacterianos/química , Antibacterianos/farmacología , Hidróxidos/química , Especies Reactivas de Oxígeno , Solubilidad
14.
Microorganisms ; 10(6)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744723

RESUMEN

Squalamine is a natural aminosterol that has been discovered in the tissues of the dogfish shark (Squalus acanthias). Studies have previously demonstrated that this promoter compound and its derivatives exhibit potent bactericidal activity against Gram-negative, Gram-positive bacteria, and multidrug-resistant bacteria. The antibacterial activity of squalamine was found to correlate with that of other antibiotics, such as colistin and polymyxins. Still, in the field of microbiology, evidence has shown that squalamine and its derivatives have antifungal activity, antiprotozoa effect against a limited list of protozoa, and could exhibit antiviral activity against both RNA- and DNA-enveloped viruses. Furthermore, squalamine and its derivatives have been identified as being antiangiogenic compounds in the case of several types of cancers and induce a potential positive effect in the case of other diseases such as experimental retinopathy and Parkinson's disease. Given the diverse effects of the squalamine and its derivatives, in this review we provide the different advances in our understanding of the various effects of these promising molecules and try to draw up a non-exhaustive list of the different mechanisms of actions of squalamine and its derivatives on the human organism and on different pathogens.

15.
Nanoscale ; 14(29): 10335-10348, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35833371

RESUMEN

Understanding the mechanisms of the interactions between zinc-based layered double hydroxides (LDHs) and bacterial surfaces is of great importance to improve the efficiency of these antibiotic-free antibacterial agents. In fact, the role of surface interactions in the antibacterial activity of zinc-based LDH nanoparticles compared to that of dissolution and generation of reactive oxygen species (ROS) is still not well documented. In this study, we show that ZnAl LDH nanoparticles exhibit a strong antibacterial effect against Staphylococcus aureus by inducing serious cell wall damages as revealed by the antibacterial activity tests and atomic force microscopy (AFM) imaging, respectively. The comparison of the antibacterial properties of ZnAl LDH nanoparticles and micron-sized ZnAl LDHs also demonstrated that the antibacterial activity of Zn-based LDHs goes beyond the simple dissolution into Zn2+ antibacterial ions. Furthermore, we developed an original approach to functionalize AFM tips with LDH films in order to probe their interactions with living S. aureus cells by means of AFM-based force spectroscopy (FS). The force spectroscopy analysis revealed that antibacterial ZnAl LDH nanoparticles show specific recognition of S. aureus cells with high adhesion frequency and remarkable force magnitudes. This finding provides a first insight into the antibacterial mechanism of Zn-based LDHs through direct surface interactions by which they are able to recognize and adhere to bacterial surfaces, thus damaging them and leading to subsequent growth inhibition.


Asunto(s)
Nanopartículas , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Hidróxidos/química , Hidróxidos/farmacología , Microscopía de Fuerza Atómica , Nanopartículas/química , Zinc/química , Zinc/farmacología
16.
Yeast ; 28(4): 321-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21456057

RESUMEN

We describe a new cloning-free strategy to delete genes in the opportunistic pathogenic yeast Candida lusitaniae. We first constructed two ura3 Δ strains in C. lusitaniae for their use in transformation experiments. One was deleted for the entire URA3 coding sequence; the other possessed a partial deletion within the coding region, which was used to determine the minimum amount of homology required for efficient homologous recombination by double crossing-over of a linear DNA fragment restoring URA3 expression. This amount was estimated to 200 bp on each side of the DNA fragment. These data constituted the basis of the development of a strategy to construct DNA cassettes for gene deletion by a cloning-free overlapping PCR method. Two cassettes were necessary in two successive transformation steps for the complete removal of a gene of interest. As an example, we report here the deletion of the LEU2 gene. The first cassette was constituted by the URA3 gene flanked by two large fragments (500 bp) homologous to the 5' and 3' non-coding regions of LEU2. After transformation of an ura3 Δ recipient strain and integration of the cassette at the LEU2 locus, the URA3 gene was removed by a second transformation round with a DNA cassette made by the fusion between the 5' and 3' non-coding regions of the LEU2 gene. The overall procedure takes less than 2 weeks and allows the creation of a clean null mutant that retains no foreign DNA sequence integrated in its genome.


Asunto(s)
Candida/genética , Clonación Molecular/métodos , Proteínas Fúngicas/genética , Eliminación de Gen , Reacción en Cadena de la Polimerasa/métodos , Candida/patogenicidad
17.
Anal Chim Acta ; 1188: 339177, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34794582

RESUMEN

We fabricated an electrochemical molecularly imprinted polymer (MIP) chemosensor for rapid identification and quantification of E. coli strain using 2-aminophenyl boronic acid as the functional monomer. This strain is a modified Gram-negative strain of Escherichia coli bacterium, an ordinary human gut component. The E. coli strongly interacts with a boronic acid because of porous and flexible polymers of the cell wall. The SEM imaging showed that the bacteria template was partially entrapped within the polymeric matrix in a single step. Moreover, this imaging confirmed E. coli K-12 cell template extraction effectiveness. The prepared MIP determined the E. coli K-12 strain up to 2.9 × 104 cells mL-1. The interference study performed in the presence of E. coli variants expressing different surface appendages (type 1 fimbriae or Antigen 43 protein) or Shewanella oneidensis MR1, another Gram-negative bacteria, demonstrated that the bacterial surface composition notably impacts sensing properties of the bacteria imprinted polymer.


Asunto(s)
Escherichia coli K12 , Impresión Molecular , Receptores Artificiales , Polímeros Impresos Molecularmente , Shewanella
18.
J Colloid Interface Sci ; 582(Pt B): 764-772, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32916574

RESUMEN

Surface protection against biofilms is still an open challenge. Current strategies rely on coatings that are meant to guarantee antiadhesive or antimicrobial effects. While it seems difficult to ensure antiadhesion in complex media and against all the adhesive arsenal of microbes, strategies based on antimicrobials lack from sustainable functionalization methodologies to allow the perfect efficiency of the grafted molecules. Here we used the high affinity ligand-receptor interaction between biotin and streptavidin to functionalize surfaces with lysozyme, an enzyme that degrades the bacterial peptidoglycan cell wall. Biotinylated lysozyme was grafted on surfaces coated with streptavidin receptors. Using atomic force microscopy (AFM)-based single molecule force spectroscopy, we showed that grafting through ligand-receptor interaction allows the correct orientation of the enzyme on the substrate for enhanced activity towards the microbial target. The antibacterial efficiency was tested against Micrococcus luteus and revealed that surface protection was improved when lysozyme was grafted through the ligand-receptor interaction. These results suggest that bio-molecular interactions are promising for a sustainable grafting of antimicrobial agents on surfaces.


Asunto(s)
Antiinfecciosos , Muramidasa , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Microscopía de Fuerza Atómica , Estreptavidina , Propiedades de Superficie
20.
Nanoscale ; 12(47): 23885-23896, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33289756

RESUMEN

Microbes employ a variety of strategies to adhere to abiotic and biotic surfaces, as well as host cells. In addition to their surface physicochemical properties (e.g. charge, hydrophobic balance), microbes produce appendages (e.g. pili, fimbriae, flagella) and express adhesion proteins embedded in the cell wall or cell membrane, with adhesive domains targeting specific ligands or chemical properties. Atomic force microscopy (AFM) is perfectly suited to deciphering the adhesive properties of microbial cells. Notably, AFM imaging has revealed the cell wall topographical organization of live cells at unprecedented resolution, and AFM has a dual capability to probe adhesion at the single-cell and single-molecule levels. AFM is thus a powerful tool for unravelling the molecular mechanisms of microbial adhesion at scales ranging from individual molecular interactions to the behaviours of entire cells. In this review, we cover some of the major breakthroughs facilitated by AFM in deciphering the microbial adhesive arsenal, including the exciting development of anti-adhesive strategies.


Asunto(s)
Adhesivos , Fimbrias Bacterianas , Microscopía de Fuerza Atómica , Nanotecnología , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA