Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 293(12): 4381-4402, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29414790

RESUMEN

Although the functional role of chromatin marks at promoters in mediating cell-restricted gene expression has been well characterized, the role of intragenic chromatin marks is not well understood, especially in endothelial cell (EC) gene expression. Here, we characterized the histone H3 and H4 acetylation profiles of 19 genes with EC-enriched expression via locus-wide chromatin immunoprecipitation followed by ultra-high-resolution (5 bp) tiling array analysis in ECs versus non-ECs throughout their genomic loci. Importantly, these genes exhibit differential EC enrichment of H3 and H4 acetylation in their promoter in ECs versus non-ECs. Interestingly, VEGFR-2 and VEGFR-1 show EC-enriched acetylation across broad intragenic regions and are up-regulated in non-ECs by histone deacetylase inhibition. It is unclear which histone acetyltransferases (KATs) are key to EC physiology. Depletion of KAT7 reduced VEGFR-2 expression and disrupted angiogenic potential. Microarray analysis of KAT7-depleted ECs identified 263 differentially regulated genes, many of which are key for growth and angiogenic potential. KAT7 inhibition in zebrafish embryos disrupted vessel formation and caused loss of circulatory integrity, especially hemorrhage, all of which were rescued with human KAT7. Notably, perturbed EC-enriched gene expression, especially the VEGFR-2 homologs, contributed to these vascular defects. Mechanistically, KAT7 participates in VEGFR-2 transcription by mediating RNA polymerase II binding, H3 lysine 14, and H4 acetylation in its intragenic region. Collectively, our findings support the importance of differential histone acetylation at both promoter and intragenic regions of EC genes and reveal a previously underappreciated role of KAT7 and intragenic histone acetylation in regulating VEGFR-2 and endothelial function.


Asunto(s)
Cromatina/química , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Histonas/química , Pez Cebra/metabolismo , Acetilación , Animales , Células Cultivadas , Cromatina/metabolismo , Endotelio Vascular/citología , Histona Acetiltransferasas/genética , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/crecimiento & desarrollo
2.
Arterioscler Thromb Vasc Biol ; 38(12): 2806-2818, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30571172

RESUMEN

Objective- Endothelial cells (ECs) sense and respond to flow-induced mechanical stress, in part, via microtubule-based projections called primary cilia. However, many critical steps during vascular morphogenesis occur independent of flow. The involvement of cilia in regulating these stages of cranial vascular morphogenesis is poorly understood because cilia have not been visualized in primary head vessels. The objective of this study was to investigate involvement of cilia in regulating the early stages of cranial vascular morphogenesis. Approach and Results- Using high-resolution imaging of the Tg(kdrl:mCherry-CAAX) y171 ;(bactin::Arl13b:GFP) zebrafish line, we showed that cilia are enriched in the earliest formed cranial vessels that assemble via vasculogenesis and in angiogenic hindbrain capillaries. Cilia were more prevalent around the boundaries of putative intravascular spaces in primary and angiogenic vessels. Loss of cardiac contractility and blood flow, because of knockdown of cardiac troponin T type 2a ( tnnt2a) expression, did not affect the distribution of cilia in primary head vasculature. In later stages of development, cilia were detected in retinal vasculature, areas of high curvature, vessel bifurcation points, and during vessel anastomosis. Loss of genes crucial for cilia biogenesis ( ift172 and ift81) induced intracerebral hemorrhages in an EC-autonomous manner. Exposure to high shear stress induced premature cilia disassembly in brain ECs and was associated with intracerebral hemorrhages. Conclusions- Our study suggests a functional role for cilia in brain ECs, which is associated with the emergence and remodeling of the primary cranial vasculature. This cilia function is flow-independent, and cilia in ECs are required for cerebral-vascular stability.


Asunto(s)
Arterias Cerebrales/embriología , Venas Cerebrales/embriología , Cilios , Células Endoteliales , Endotelio Vascular/embriología , Neovascularización Fisiológica , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Arterias Cerebrales/metabolismo , Venas Cerebrales/metabolismo , Cilios/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Malformaciones Arteriovenosas Intracraneales/embriología , Malformaciones Arteriovenosas Intracraneales/genética , Malformaciones Arteriovenosas Intracraneales/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mecanotransducción Celular , Morfogénesis , Troponina T/genética , Troponina T/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteína Fluorescente Roja
3.
Dev Biol ; 430(1): 249-261, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28694018

RESUMEN

The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway.


Asunto(s)
Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proyección Neuronal , Vía de Señalización Wnt , Animales , Cuerpo Celular/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Netrinas
4.
Mol Med ; 23: 134-148, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28598490

RESUMEN

Sepsis is a leading cause of death worldwide. Current treatment modalities remain largely supportive. Intervention strategies focused on inhibiting specific mediators of the inflammatory host response have been largely unsuccessful, a consequence of an inadequate understanding of the complexity and heterogeneity of the innate immune response. Moreover, the conventional drug development pipeline is time consuming and expensive and the low success rates associated with cell-based screens underline the need for whole organism screening strategies, especially for complex pathological processes. Here, we established an LPS-induced zebrafish endotoxemia model, which exhibits the major hallmarks of human sepsis including, edema and tissue/organ damage, increased vascular permeability and vascular leakage accompanied by an altered expression of cellular junction proteins, increased cytokine expression, immune cell activation and ROS production, reduced circulation and increased platelet aggregation. We tested the suitability of the model for phenotype-based drug screening using three primary readouts: mortality, vascular leakage, and ROS production. Preliminary screening identified fasudil, a drug known to protect against vascular leakage in murine models, as a lead hit thereby validating the utility of our model for sepsis drug screens. This zebrafish sepsis model has the potential to rapidly analyze sepsis associated pathologies and cellular processes in the whole organism, as well as to screen and validate large numbers of compounds that can modify sepsis pathology in vivo.


Asunto(s)
Modelos Animales de Enfermedad , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Lipopolisacáridos , Sepsis , Pez Cebra , Animales , Citocinas/inmunología , Embrión no Mamífero , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Fenotipo , Especies Reactivas de Oxígeno/inmunología , Sepsis/tratamiento farmacológico , Sepsis/etiología , Sepsis/inmunología
5.
Eukaryot Cell ; 12(5): 654-64, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23457193

RESUMEN

Rtt109 is a fungal histone acetyltransferase (HAT) that catalyzes histone H3 acetylation functionally associated with chromatin assembly. Rtt109-mediated H3 acetylation involves two histone chaperones, Asf1 and Vps75. In vivo, Rtt109 requires both chaperones for histone H3 lysine 9 acetylation (H3K9ac) but only Asf1 for full H3K56ac. In vitro, Rtt109-Vps75 catalyzes both H3K9ac and H3K56ac, whereas Rtt109-Asf1 catalyzes only H3K56ac. In this study, we extend the in vitro chaperone-associated substrate specificity of Rtt109 by showing that it acetylates vertebrate linker histone in the presence of Vps75 but not Asf1. In addition, we demonstrate that in Saccharomyces cerevisiae a short basic sequence at the carboxyl terminus of Rtt109 (Rtt109C) is required for H3K9ac in vivo. Furthermore, through in vitro and in vivo studies, we demonstrate that Rtt109C is required for optimal H3K56ac by the HAT in the presence of full-length Asf1. When Rtt109C is absent, Vps75 becomes important for H3K56ac by Rtt109 in vivo. In addition, we show that lysine 290 (K290) in Rtt109 is required in vivo for Vps75 to enhance the activity of the HAT. This is the first in vivo evidence for a role for Vps75 in H3K56ac. Taken together, our results contribute to a better understanding of chaperone control of Rtt109-mediated H3 acetylation.


Asunto(s)
Histona Acetiltransferasas/fisiología , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Acetilación , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Dominio Catalítico , Proteínas de Ciclo Celular/química , Pollos , Técnicas de Inactivación de Genes , Histona Acetiltransferasas/química , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Dev Dyn ; 242(12): 1395-404, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24038582

RESUMEN

BACKGROUND: Vertebrate trunk induction requires inhibition of bone morphogenetic protein (BMP) signaling, whereas vertebrate head induction requires concerted inhibition of both Wnt and BMP signaling. RNA binding proteins play diverse roles in embryonic development and their roles in vertebrate head development remain to be elucidated. RESULTS: We first characterized the human RBM47 as an RNA binding protein that specifically binds RNA but not single-stranded DNA. Next, we knocked down rbm47 gene function in zebrafish using morpholinos targeting the start codon and exon-1/intron-1 splice junction. Down-regulation of rbm47 resulted in headless and small head phenotypes, which can be rescued by a wnt8a blocking morpholino. To further reveal the mechanism of rbm47's role in head development, microarrays were performed to screen genes differentially expressed in normal and knockdown embryos. epcam and a2ml were identified as the most significantly up- and down-regulated genes, respectively. The microarrays also confirmed up-regulation of several genes involved in head development, including gsk3a, otx2, and chordin, which are important regulators of Wnt signaling. CONCLUSIONS: Altogether, our findings reveal that Rbm47 is a novel RNA-binding protein critical for head formation and embryonic patterning during zebrafish embryogenesis which may act through a Wnt8a signaling pathway.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Cabeza/embriología , Proteínas de Unión al ARN/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas del Citoesqueleto/metabolismo , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Hibridación in Situ , Análisis por Micromatrices , Datos de Secuencia Molecular , Morfolinos/genética , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , Proteínas de Pez Cebra/genética
8.
Elife ; 92020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32779569

RESUMEN

One key bottleneck in understanding the human genome is the relative under-characterization of 90% of protein coding regions. We report a collection of 1200 transgenic zebrafish strains made with the gene-break transposon (GBT) protein trap to simultaneously report and reversibly knockdown the tagged genes. Protein trap-associated mRFP expression shows previously undocumented expression of 35% and 90% of cloned genes at 2 and 4 days post-fertilization, respectively. Further, investigated alleles regularly show 99% gene-specific mRNA knockdown. Homozygous GBT animals in ryr1b, fras1, tnnt2a, edar and hmcn1 phenocopied established mutants. 204 cloned lines trapped diverse proteins, including 64 orthologs of human disease-associated genes with 40 as potential new disease models. Severely reduced skeletal muscle Ca2+ transients in GBT ryr1b homozygous animals validated the ability to explore molecular mechanisms of genetic diseases. This GBT system facilitates novel functional genome annotation towards understanding cellular and molecular underpinnings of vertebrate biology and human disease.


The human genome counts over 20,000 genes, which can be turned on and off to create the proteins required for most of life processes. Once produced, proteins need move to specific locations in the cell, where they are able to perform their jobs. Despite striking scientific advances, 90% of human genes are still under-studied; where the proteins they code for go, and what they do remains unknown. Zebrafish share many genes with humans, but they are much easier to manipulate genetically. Here, Ichino et al. used various methods in zebrafish to create a detailed 'catalogue' of previously poorly understood genes, focusing on where the proteins they coded for ended up and the biological processes they were involved with. First, a genetic tool called gene-breaking transposons (GBTs) was used to create over 1,200 strains of genetically altered fish in which a specific protein was both tagged with a luminescent marker and unable to perform its role. Further analysis of 204 of these strains revealed new insight into the role of each protein, with many having unexpected roles and localisations. For example, in one zebrafish strain, the affected gene was similar to a human gene which, when inactivated, causes severe muscle weakness. These fish swam abnormally slowly and also had muscle problems, suggesting that the GBT fish strains could 'model' the human disease. This work sheds new light on the role of many previously poorly understood genes. In the future, similar collections of GBT fish strains could help researchers to study both normal human biology and disease. They could especially be useful in cases where the genes responsible for certain conditions are still difficult to identify.


Asunto(s)
Técnicas de Silenciamiento del Gen , Biblioteca de Genes , Genes Reporteros , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , ARN Mensajero/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
9.
Photoacoustics ; 12: 14-21, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30225194

RESUMEN

With their optically transparent appearance, zebrafish larvae are readily imaged with optical-resolution photoacoustic (PA) microscopy (OR-PAM). Previous OR-PAM studies have mapped endogenous chromophores (e.g. melanin and hemoglobin) within larvae; however, anatomical features cannot be imaged with OR-PAM alone due to insufficient optical absorption. We have previously reported on the photoacoustic radiometry (PAR) technique, which can be used simultaneously with OR-PAM to generate images dependent upon the optical attenuation properties of a sample. Here we demonstrate application of the duplex PAR/PA technique for label-free imaging of the anatomy and vasculature of zebrafish larvae in vivo at 200 and 400 MHz ultrasound detection frequencies. We then use the technique to assess the effects of anti-angiogenic drugs on the development of the larval vasculature. Our results demonstrate the effectiveness of simultaneous PAR/PA for acquiring anatomical images of optically transparent samples in vivo, and its potential applications in assessing drug efficacy and embryonic development.

10.
JCI Insight ; 3(24)2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30568043

RESUMEN

Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.


Asunto(s)
Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo , Adulto , Animales , Modelos Animales de Enfermedad , Edema Cardíaco/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Células HEK293 , Hexosaminas/metabolismo , Humanos , Masculino , Músculo Esquelético/crecimiento & desarrollo , Enfermedades Musculares/fisiopatología , Mutación , Oxo-Ácido-Liasas/uso terapéutico , Enfermedad por Almacenamiento de Ácido Siálico/metabolismo , Adulto Joven , Pez Cebra/embriología
11.
Biol Open ; 6(3): 348-357, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28167492

RESUMEN

Cardiac development in vertebrates is a finely tuned process regulated by a set of conserved signaling pathways. Perturbations of these processes are often associated with congenital cardiac malformations. Platelet-derived growth factor receptor α (PDGFRα) is a highly conserved tyrosine kinase receptor, which is essential for development and organogenesis. Disruption of Pdgfrα function in murine models is embryonic lethal due to severe cardiovascular defects, suggesting a role in cardiac development, thus necessitating the use of alternative models to explore its precise function. In this study, we generated a zebrafish pdgfra mutant line by gene trapping, in which the Pdgfra protein is truncated and fused with mRFP (Pdgfra-mRFP). Our results demonstrate that pdgfra mutants have defects in cardiac morphology as a result of abnormal fusion of myocardial precursors. Expression analysis of the developing heart at later stages suggested that Pdgfra-mRFP is expressed in the endocardium. Further examination of the endocardium in pdgfra mutants revealed defective endocardial migration to the midline, where cardiac fusion eventually occurs. Together, our data suggests that pdgfra is required for proper medial migration of both endocardial and myocardial precursors, an essential step required for cardiac assembly and development.

12.
J Am Heart Assoc ; 3(5): e001018, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25332179

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) resident protein 44 (ERp44) is a member of the protein disulfide isomerase family, is induced during ER stress, and may be involved in regulating Ca(2+) homeostasis. However, the role of ERp44 in cardiac development and function is unknown. The aim of this study was to investigate the role of ERp44 in cardiac development and function in mice, zebrafish, and embryonic stem cell (ESC)-derived cardiomyocytes to determine the underlying role of ERp44. METHODS AND RESULTS: We generated and characterized ERp44(-/-) mice, ERp44 morphant zebrafish embryos, and ERp44(-/-) ESC-derived cardiomyocytes. Deletion of ERp44 in mouse and zebrafish caused significant embryonic lethality, abnormal heart development, altered Ca(2+) dynamics, reactive oxygen species generation, activated ER stress gene profiles, and apoptotic cell death. We also determined the cardiac phenotype in pressure overloaded, aortic-banded ERp44(+/-) mice: enhanced ER stress activation and increased mortality, as well as diastolic cardiac dysfunction with a significantly lower fractional shortening. Confocal and LacZ histochemical staining showed a significant transmural gradient for ERp44 in the adult heart, in which high expression of ERp44 was observed in the outer subepicardial region of the myocardium. CONCLUSIONS: ERp44 plays a critical role in embryonic heart development and is crucial in regulating cardiac cell Ca(2+) signaling, ER stress, ROS-induced oxidative stress, and activation of the intrinsic mitochondrial apoptosis pathway.


Asunto(s)
Células Madre Embrionarias/metabolismo , Retículo Endoplásmico/metabolismo , Cardiopatías Congénitas/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Apoptosis , Señalización del Calcio , Células Cultivadas , Células Madre Embrionarias/patología , Retículo Endoplásmico/patología , Estrés del Retículo Endoplásmico , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Chaperonas Moleculares/genética , Morfogénesis , Contracción Miocárdica , Miocitos Cardíacos/patología , Fenotipo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Pez Cebra/embriología , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA