Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 225, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769116

RESUMEN

Ischemic stroke induces neovascularization of the injured tissue as an attempt to promote structural repair and neurological recovery. Angiogenesis is regulated by pericytes that potently react to ischemic stroke stressors, ranging from death to dysfunction. Platelet-derived growth factor (PDGF) receptor (PDGFR)ß controls pericyte survival, migration, and interaction with brain endothelial cells. PDGF-D a specific ligand of PDGFRß is expressed in the brain, yet its regulation and role in ischemic stroke pathobiology remains unexplored. Using experimental ischemic stroke mouse model, we found that PDGF-D is transiently induced in brain endothelial cells at the injury site in the subacute phase. To investigate the biological significance of PDGF-D post-ischemic stroke regulation, its subacute expression was either downregulated using siRNA or upregulated using an active recombinant form. Attenuation of PDGF-D subacute induction exacerbates neuronal loss, impairs microvascular density, alters vascular permeability, and increases microvascular stalling. Increasing PDGF-D subacute bioavailability rescues neuronal survival and improves neurological recovery. PDGF-D subacute enhanced bioavailability promotes stable neovascularization of the injured tissue and improves brain perfusion. Notably, PDGF-D enhanced bioavailability improves pericyte association with brain endothelial cells. Cell-based assays using human brain pericyte and brain endothelial cells exposed to ischemia-like conditions were applied to investigate the underlying mechanisms. PDGF-D stimulation attenuates pericyte loss and fibrotic transition, while increasing the secretion of pro-angiogenic and vascular protective factors. Moreover, PDGF-D stimulates pericyte migration required for optimal endothelial coverage and promotes angiogenesis. Our study unravels new insights into PDGF-D contribution to neurovascular protection after ischemic stroke by rescuing the functions of pericytes.


Asunto(s)
Células Endoteliales , Accidente Cerebrovascular Isquémico , Linfocinas , Pericitos , Factor de Crecimiento Derivado de Plaquetas , Pericitos/metabolismo , Pericitos/patología , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Ratones , Linfocinas/metabolismo , Linfocinas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Humanos , Células Endoteliales/metabolismo , Masculino , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Movimiento Celular
2.
Eur J Neurosci ; 56(11): 6003-6021, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36226387

RESUMEN

Type 2 diabetes mellitus (T2DM) increases the risk of developing Alzheimer's disease (AD), which has been proposed to be driven by an abnormal neuroinflammatory response affecting cognitive function. However, the impact of T2DM on hippocampal function and synaptic integrity during aging has not been investigated. Here, we investigated the effects of aging in T2DM on AD-like pathology using the leptin receptor-deficient db/db mouse model of T2DM. Our results indicate that adult T2DM mice exhibited impaired spatial acquisition in the Morris water maze (MWM). Morphological analysis showed an age-dependent neuronal loss in the dentate gyrus. We found that astrocyte density was significantly decreased in all regions of the hippocampus in T2DM mice. Our analysis showed that microglial activation was increased in the CA3 and the dentate gyrus of the hippocampus in an age-dependent manner in T2DM mice. However, the expression of presynaptic marker protein (synaptophysin) and the postsynaptic marker protein [postsynaptic density protein 95 (PSD95)] was unchanged in the hippocampus of adult T2DM mice. Interestingly, synaptophysin and PSD95 expression significantly decreased in the hippocampus of aged T2DM mice, suggesting an impaired hippocampal synaptic integrity. Cytokine profiling analysis displayed a robust pro-inflammatory cytokine profile in the hippocampus of aged T2DM mice compared with the younger cohort, outlining the role of aging in exacerbating the neuroinflammatory profile in the diabetic state. Our results suggest that T2DM impairs cognitive function by promoting neuronal loss in the dentate gyrus and triggering an age-dependent deterioration in hippocampal synaptic integrity, associated with an aberrant neuroinflammatory response.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Navegación Espacial , Ratones , Animales , Sinaptofisina/metabolismo , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
3.
Brain Behav Immun ; 99: 363-382, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34343617

RESUMEN

Alzheimer's disease (AD) pathology is characterized by amyloid-ß (Aß) deposition and tau hyper-phosphorylation, accompanied by a progressive cognitive decline. Monocytes have been recently shown to play a major role in modulating Aß pathology, and thereby have been pointed as potential therapeutic targets. However, the main challenge remains in identifying clinically relevant interventions that could modulate monocyte immune functions in absence of undesired off-target effects. Erythropoietin (EPO), a key regulator of erythrocyte production, has been shown to possess immunomodulatory potential and to provide beneficial effects in preclinical models of AD. However, the transition to use recombinant human EPO in clinical trials was hindered by unwanted erythropoietic effects that could lead to thrombosis. Here, we used a recently identified non-erythropoietic analogue of EPO, ARA 290, to evaluate its therapeutic potential in AD therapy. We first evaluated the effects of early systemic ARA 290 administration on AD-like pathology in an early-onset model, represented by young APP/PS1 mice. Our findings indicate that ARA 290 early treatment decelerated Aß pathology progression in APP/PS1 mice while improving cognitive functions. ARA 290 potently increased the levels of total monocytes by specifically stimulating the generation of Ly6CLow patrolling subset, which are implicated in clearing Aß from the cerebral vasculature, and subsequently reducing overall Aß burden in the brain. Moreover, ARA 290 increased the levels of monocyte progenitors in the bone marrow. Using chimeric APP/PS1 mice in which Ly6CLow patrolling subset are selectively depleted, ARA 290 was inefficient in attenuating Aß pathology and ameliorating cognitive functions in young animals. Interestingly, ARA 290 effects were compromised when delivered in a late-onset model, represented by aged APP1/PS1. In aged APP/PS1 mice in which AD-like pathology is at advanced stages, ARA 290 failed to reverse Aß pathology and to increase the levels of circulating monocytes. Our study suggests that ARA 290 early systemic treatment could prevent AD-like progression via modulation of monocyte functions by specifically increasing the ratio of patrolling monocytes.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Monocitos/patología , Presenilina-1
4.
Neurobiol Dis ; 161: 105561, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34780863

RESUMEN

Coronavirus disease 19 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). COVID-19 pathogenesis causes vascular-mediated neurological disorders via elusive mechanisms. SARS-CoV-2 infects host cells via the binding of viral Spike (S) protein to transmembrane receptor, angiotensin-converting enzyme 2 (ACE2). Although brain pericytes were recently shown to abundantly express ACE2 at the neurovascular interface, their response to SARS-CoV-2 S protein is still to be elucidated. Using cell-based assays, we found that ACE2 expression in human brain vascular pericytes was increased upon S protein exposure. Pericytes exposed to S protein underwent profound phenotypic changes associated with an elongated and contracted morphology accompanied with an enhanced expression of contractile and myofibrogenic proteins, such as α-smooth muscle actin (α-SMA), fibronectin, collagen I, and neurogenic locus notch homolog protein-3 (NOTCH3). On the functional level, S protein exposure promoted the acquisition of calcium (Ca2+) signature of contractile ensheathing pericytes characterized by highly regular oscillatory Ca2+ fluctuations. Furthermore, S protein induced lipid peroxidation, oxidative and nitrosative stress in pericytes as well as triggered an immune reaction translated by activation of nuclear factor-kappa-B (NF-κB) signaling pathway, which was potentiated by hypoxia, a condition associated with vascular comorbidities that exacerbate COVID-19 pathogenesis. S protein exposure combined to hypoxia enhanced the production of pro-inflammatory cytokines involved in immune cell activation and trafficking, namely macrophage migration inhibitory factor (MIF). Using transgenic mice expressing the human ACE2 that recognizes S protein, we observed that the intranasal infection with SARS-CoV-2 rapidly induced hypoxic/ischemic-like pericyte reactivity in the brain of transgenic mice, accompanied with an increased vascular expression of ACE2. Moreover, we found that SARS-CoV-2 S protein accumulated in the intranasal cavity reached the brain of mice in which the nasal mucosa is deregulated. Collectively, these findings suggest that SARS-CoV-2 S protein impairs the vascular and immune regulatory functions of brain pericytes, which may account for vascular-mediated brain damage. Our study provides a better understanding for the mechanisms underlying cerebrovascular disorders in COVID-19, paving the way to develop new therapeutic interventions.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Encéfalo/metabolismo , COVID-19/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia/metabolismo , Inflamación/metabolismo , Pericitos/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Actinas/metabolismo , Enzima Convertidora de Angiotensina 2/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/genética , Animales , Encéfalo/irrigación sanguínea , COVID-19/fisiopatología , Señalización del Calcio , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Humanos , Hipoxia-Isquemia Encefálica/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/genética , Factores Inhibidores de la Migración de Macrófagos/efectos de los fármacos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Miofibroblastos , FN-kappa B/efectos de los fármacos , FN-kappa B/metabolismo , Mucosa Nasal , Estrés Nitrosativo , Estrés Oxidativo , Pericitos/citología , Pericitos/efectos de los fármacos , Fenotipo , Receptor Notch3/metabolismo , Receptores de Coronavirus/efectos de los fármacos , Receptores de Coronavirus/genética , Receptores de Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/farmacología
5.
Int J Mol Sci ; 21(18)2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961703

RESUMEN

Microglia are the resident immune cells of the brain, constituting the powerhouse of brain innate immunity. They originate from hematopoietic precursors that infiltrate the developing brain during different stages of embryogenesis, acquiring a phenotype characterized by the presence of dense ramifications. Microglial cells play key roles in maintaining brain homeostasis and regulating brain immune responses. They continuously scan and sense the brain environment to detect any occurring changes. Upon detection of a signal related to physiological or pathological processes, the cells are activated and transform to an amoeboid-like phenotype, mounting adequate responses that range from phagocytosis to secretion of inflammatory and trophic factors. The overwhelming evidence suggests that microglia are crucially implicated in influencing neuronal proliferation and differentiation, as well as synaptic connections, and thereby cognitive and behavioral functions. Here, we review the role of microglia in adult neurogenesis under physiological conditions, and how this role is affected in neurodegenerative diseases.


Asunto(s)
Encéfalo/inmunología , Inmunidad Innata , Microglía/inmunología , Enfermedades Neurodegenerativas/inmunología , Neurogénesis/inmunología , Adulto , Encéfalo/patología , Humanos , Microglía/patología , Enfermedades Neurodegenerativas/patología
6.
Int J Mol Sci ; 18(3)2017 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-28245599

RESUMEN

Ischemic stroke constitutes the major cause of death and disability in the industrialized world. The interest in microglia arose from the evidence outlining the role of neuroinflammation in ischemic stroke pathobiology. Microglia constitute the powerhouse of innate immunity in the brain. Microglial cells are highly ramified, and use these ramifications as sentinels to detect changes in brain homeostasis. Once a danger signal is recognized, cells become activated and mount specialized responses that range from eliminating cell debris to secreting inflammatory signals and trophic factors. Originally, it was suggested that microglia play essentially a detrimental role in ischemic stroke. However, recent reports are providing evidence that the role of these cells is more complex than what was originally thought. Although these cells play detrimental role in the acute phase, they are required for tissue regeneration in the post-acute phases. This complex role of microglia in ischemic stroke pathobiology constitutes a major challenge for the development of efficient immunomodulatory therapies. This review aims at providing an overview regarding the role of resident microglia and peripherally recruited macrophages in ischemic pathobiology. Furthermore, the review will highlight future directions towards the development of novel fine-tuning immunomodulatory therapeutic interventions.


Asunto(s)
Microglía/inmunología , Microglía/metabolismo , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/metabolismo , Animales , Biomarcadores , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Comunicación Celular , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Sistema Mononuclear Fagocítico/inmunología , Sistema Mononuclear Fagocítico/metabolismo , Transducción de Señal , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia
7.
Brain Behav Immun ; 55: 138-150, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26254232

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting elderly people worldwide, which is mainly characterized by cerebral amyloid-beta (Aß) plaque deposition and neurofibrillary tangle formation. The interest in microglia arose from the overwhelming experimental evidence that outlined a key role of neuroinflammation in AD pathology. Microglia constitute the powerhouse of the innate immune system in the brain. It is now widely accepted that microglia are myeloid-derived cells that infiltrate the developing brain at the early embryonic stages, and acquire a highly ramified phenotype postnatally. Microglia use these dynamic ramifications as sentinels to sense and detect any occurring alteration in brain homeostasis. Once a danger signal is detected, microglia get activated by acquiring a less ramified phenotype, and mount adequate responses that range from phagocyting cell debris to secreting inflammatory and trophic factors. Earlier reports have demonstrated, unequivocally, that microglia surround Aß plaques and internalize Aß microaggregates. However, the implication of these observations in AD pathology, and consequently treatment, is still a matter of debate. Nonetheless, targeting the activity of these cells constituted a convergent point in this debate. Unfortunately, the conflicting experimental findings obtained following the modulation of microglial activity in AD, further fueled the debate. This review aims at providing an overview regarding what we know about the implication of microglia in AD pathology, and treatment. The emerging role of monocytes is also discussed.


Asunto(s)
Enfermedad de Alzheimer/inmunología , Microglía/inmunología , Animales , Humanos
8.
Acta Neuropathol ; 130(4): 603, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26341346

RESUMEN

Erratum to: Acta Neuropathol (2012) 123:273­284. DOI 10.1007/s00401­011­0914­z. The authors would like to correct Fig. 3 of the original manuscript, since the image in Fig. 3b does not correspond to a VEGF treated animal. Corrected Fig. 3 is shown below. We apologize for this mistake.

9.
Arterioscler Thromb Vasc Biol ; 33(7): 1561-7, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23559636

RESUMEN

OBJECTIVE: Therapeutic angiogenesis aims at the promotion of vascular growth, usually under conditions of atherosclerosis. It was unknown how hyperlipidemia, a risk factor that is closely associated with atherosclerosis of brain vessels in humans, influences vascular endothelial growth factor-induced angiogenesis and stroke recovery. APPROACH AND RESULTS: Wild-type and apolipoprotein-E (ApoE)(-/-) mice were kept on regular or cholesterol-rich diet for mimicking different severities of hyperlipidemia. Mice were treated intracerebroventricularly with recombinant human vascular endothelial growth factor for 21 days (0.02 µg/d) and subsequently subjected to 90-minute middle cerebral artery occlusion followed by 1 or 24 hours of reperfusion. Histochemical, autoradiographic, and regional bioluminescence techniques were used to evaluate effects of blood lipids on postischemic angiogenesis, histopathologic brain injury, cerebral blood flow, protein synthesis and energy state, and pericyte coverage of brain endothelial cells. Hyperlipidemia dose-dependently attenuated vascular endothelial growth factor-induced capillary formation and pericyte coverage of brain endothelial cells, abolishing the improvement of cerebral blood flow during subsequent stroke, resulting in the loss of the metabolic penumbra and increased brain infarction. The enhanced angiogenesis after vascular endothelial growth factor treatment was accompanied by increased expression of the adhesion protein N-cadherin, which mediates endothelial-pericytic interactions, in ischemic brain microvessels of wild-type mice on regular diet that was blunted in wild-type mice on Western diet and ApoE(-/-) mice on either diet. CONCLUSIONS: The compromised vessel formation and hemodynamics question the concept of therapeutic angiogenesis in ischemic stroke where hyperlipidemia is highly prevalent.


Asunto(s)
Inductores de la Angiogénesis/administración & dosificación , Capilares/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Hiperlipidemias/complicaciones , Neovascularización Fisiológica/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Pericitos/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Autorradiografía , Biomarcadores/sangre , Velocidad del Flujo Sanguíneo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/patología , Barrera Hematoencefálica/fisiopatología , Cadherinas/metabolismo , Capilares/patología , Capilares/fisiopatología , Permeabilidad Capilar/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/metabolismo , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/patología , Hiperlipidemias/fisiopatología , Bombas de Infusión Implantables , Flujometría por Láser-Doppler , Lípidos/sangre , Mediciones Luminiscentes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pericitos/metabolismo , Pericitos/patología , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo
10.
Int J Mol Sci ; 15(4): 6453-74, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24743889

RESUMEN

Neurons are extremely vulnerable cells that tightly rely on the brain's highly dynamic and complex vascular network that assures an accurate and adequate distribution of nutrients and oxygen. The neurovascular unit (NVU) couples neuronal activity to vascular function, controls brain homeostasis, and maintains an optimal brain microenvironment adequate for neuronal survival by adjusting blood-brain barrier (BBB) parameters based on brain needs. The NVU is a heterogeneous structure constituted by different cell types that includes pericytes. Pericytes are localized at the abluminal side of brain microvessels and contribute to NVU function. Pericytes play essential roles in the development and maturation of the neurovascular system during embryogenesis and stability during adulthood. Initially, pericytes were described as contractile cells involved in controlling neurovascular tone. However, recent reports have shown that pericytes dynamically respond to stress induced by injury upon brain diseases, by chemically and physically communicating with neighboring cells, by their immune properties and by their potential pluripotent nature within the neurovascular niche. As such, in this paper, we would like to review the role of pericytes in NVU remodeling, and their potential as targets for NVU repair strategies and consequently neuroprotection in two pathophysiologically distinct brain disorders: ischemic stroke and Alzheimer's disease (AD).


Asunto(s)
Encefalopatías/metabolismo , Pericitos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Encefalopatías/patología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Neuronas/metabolismo , Pericitos/citología , Transducción de Señal
11.
STAR Protoc ; 5(2): 102989, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38568817

RESUMEN

CNS injuries are associated with profound changes in cell organization. This protocol presents a stepwise approach to quantitatively describe the spatiotemporal changes in glial cell rearrangement in the injured murine brain, which is applicable to other biological contexts. Herein, we apply common immunolabeling of neurons and glial cells and wide-field microscopy imaging. Then, we employ computational tools for alignment to the Allen Brain Atlas, unbiased/automatic detection of cells, generation of point patterns, and data analysis. For complete details on the use and execution of this protocol, please refer to Manrique-Castano et al.1.


Asunto(s)
Encéfalo , Neuroglía , Neuronas , Animales , Ratones , Neuronas/citología , Neuronas/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos
12.
Sci Rep ; 14(1): 19035, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152163

RESUMEN

Glial scar formation represents a fundamental response to central nervous system (CNS) injuries. It is mainly characterized by a well-defined spatial rearrangement of reactive astrocytes and microglia. The mechanisms underlying glial scar formation have been extensively studied, yet quantitative descriptors of the spatial arrangement of reactive glial cells remain limited. Here, we present a novel approach using point pattern analysis (PPA) and topological data analysis (TDA) to quantify spatial patterns of reactive glial cells after experimental ischemic stroke in mice. We provide open and reproducible tools using R and Julia to quantify spatial intensity, cell covariance and conditional distribution, cell-to-cell interactions, and short/long-scale arrangement, which collectively disentangle the arrangement patterns of the glial scar. This approach unravels a substantial divergence in the distribution of GFAP+ and IBA1+ cells after injury that conventional analysis methods cannot fully characterize. PPA and TDA are valuable tools for studying the complex spatial arrangement of reactive glia and other nervous cells following CNS injuries and have potential applications for evaluating glial-targeted restorative therapies.


Asunto(s)
Astrocitos , Cicatriz , Neuroglía , Animales , Ratones , Cicatriz/patología , Neuroglía/patología , Astrocitos/patología , Microglía/patología , Accidente Cerebrovascular Isquémico/patología , Análisis de Datos , Modelos Animales de Enfermedad , Masculino , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratones Endogámicos C57BL
13.
Stroke ; 44(6): 1690-7, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23632977

RESUMEN

BACKGROUND AND PURPOSE: Therapeutic angiogenesis aims at improving cerebral blood flow by amplification of vascular sprouting, thus promoting tissue survival under conditions of subsequent ischemia. It remains unknown whether induced angiogenesis leads to the formation of functional vessels that indeed result in hemodynamic improvements. Observations of hemodynamic steal phenomena and disturbed neurovascular integrity after vascular endothelial growth factor delivery questioned the concept of therapeutic angiogenesis. METHODS: Mice were treated with recombinant human vascular endothelial growth factor (0.02 µg/d; intracerebroventricular) for 3 to 21 days and subsequently exposed to 90-minute middle cerebral artery occlusion. Angiogenesis, histological brain injury, IgG extravasation, cerebral blood flow, protein synthesis and energy state, and pericyte coverage on brain capillaries were evaluated in a multiparametric approach combining histochemical, autoradiographic, and regional bioluminescence techniques. RESULTS: Vascular endothelial growth factor increased brain capillary density within 10 days and reduced infarct volume and inflammation after subsequent middle cerebral artery occlusion, and, when delivered for prolonged periods of 21 days, enhanced postischemic blood-brain barrier integrity. Increased cerebral blood flow was noted in ischemic brain areas exhibiting enhanced angiogenesis and was associated with preservation of the metabolic penumbra, defined as brain tissue in which protein synthesis has been suppressed but ATP preserved. Vascular endothelial growth factor enhanced pericyte coverage of brain endothelial cells via mechanisms involving increased N-cadherin expression on cerebral microvessels. CONCLUSIONS: That cerebral blood flow is increased during subsequent ischemic episodes, leading to the stabilization of cerebral energy state, fosters hope that by promoting new vessel formation brain tissue survival may be improved.


Asunto(s)
Isquemia Encefálica/fisiopatología , Capilares/citología , Proliferación Celular/efectos de los fármacos , Circulación Cerebrovascular/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Pericitos/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Isquemia Encefálica/metabolismo , Cadherinas/metabolismo , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Humanos , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Pericitos/citología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Factor A de Crecimiento Endotelial Vascular/administración & dosificación
14.
Neurobiol Dis ; 50: 49-58, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23069681

RESUMEN

Methamphetamine (METH) is a widely consumed drug with high abuse potential. Studies in animals have shown that the drug produces dopaminergic neurotoxicity following both single high-dose and repeated low-dose administration. In addition, METH produces an increase in matrix metalloproteinase expression and loss of BBB integrity. We have examined the effect of repeated low-dose METH on MMP-9/2 expression and activity and laminin expression and the role of MMPs and JNK 1/2 phosphorylation on the changes induced by the drug in BBB integrity. Mice were given METH (4 mg/kg, i.p., three times separated by 3 h) and killed at different times after the last dose. Striatal MMP-9/2 activity was determined by zymography and expression of MMPs, laminin and phosphorylated JNK 1/2 was determined by western blot. BBB integrity was determined by IgG immunoreactivity. SP600125 and BB-94 were used to inhibit JNK and MMPs respectively. METH increased striatal MMP-9 expression and activity, IgG immunoreactivity and p-JNK 1/2 expression and decreased laminin expression. Increased IgG immunoreactivity colocalized with areas of greater MMP-9 activity. JNK inhibition prevented METH-induced changes in MMP-9 activity, laminin degradation and BBB leakage. BB-94 also prevented laminin degradation and BBB leakage. The decrease in BBB integrity induced by METH is mediated by the JNK pathway which activates MMP-9 causing degradation of laminin and BBB leakage.


Asunto(s)
Antracenos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/toxicidad , Inhibidores Enzimáticos/farmacología , Metanfetamina/toxicidad , Animales , Barrera Hematoencefálica/metabolismo , Western Blotting , Laminina/biosíntesis , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Masculino , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloproteinasa 9 de la Matriz/biosíntesis , Ratones , Ratones Endogámicos C57BL
15.
Stem Cells ; 30(6): 1297-310, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22593021

RESUMEN

Novel therapeutic concepts against cerebral ischemia focus on cell-based therapies in order to overcome some of the side effects of thrombolytic therapy. However, cell-based therapies are hampered because of restricted understanding regarding optimal cell transplantation routes and due to low survival rates of grafted cells. We therefore transplanted adult green fluorescence protein positive neural precursor cells (NPCs) either intravenously (systemic) or intrastriatally (intracerebrally) 6 hours after stroke in mice. To enhance survival of NPCs, cells were in vitro protein-transduced with TAT-heat shock protein 70 (Hsp70) before transplantation followed by a systematic analysis of brain injury and underlying mechanisms depending on cell delivery routes. Transduction of NPCs with TAT-Hsp70 resulted in increased intracerebral numbers of grafted NPCs after intracerebral but not after systemic transplantation. Whereas systemic delivery of either native or transduced NPCs yielded sustained neuroprotection and induced neurological recovery, only TAT-Hsp70-transduced NPCs prevented secondary neuronal degeneration after intracerebral delivery that was associated with enhanced functional outcome. Furthermore, intracerebral transplantation of TAT-Hsp70-transduced NPCs enhanced postischemic neurogenesis and induced sustained high levels of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor, and vascular endothelial growth factor in vivo. Neuroprotection after intracerebral cell delivery correlated with the amount of surviving NPCs. On the contrary, systemic delivery of NPCs mediated acute neuroprotection via stabilization of the blood-brain-barrier, concomitant with reduced activation of matrix metalloprotease 9 and decreased formation of reactive oxygen species. Our findings imply two different mechanisms of action of intracerebrally and systemically transplanted NPCs, indicating that systemic NPC delivery might be more feasible for translational stroke concepts, lacking a need of in vitro manipulation of NPCs to induce long-term neuroprotection.


Asunto(s)
Isquemia Encefálica/terapia , Proteínas HSP70 de Choque Térmico/genética , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Accidente Cerebrovascular/terapia , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/cirugía , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Técnicas de Transferencia de Gen , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Trasplante de Células Madre/métodos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/cirugía , Transducción Genética
16.
J Cereb Blood Flow Metab ; 43(11): 1873-1890, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37340860

RESUMEN

Cerebral small vessel disease (cSVD) constitutes a major risk factor for dementia. Monocytes play important roles in cerebrovascular disorders. Herein, we aimed to investigate the contribution of non-classical C-X3-C motif chemokine receptor (CX3CR)1 monocytes to cSVD pathobiology and therapy. To this end, we generated chimeric mice in which CX3CR1 in non-classical monocytes was either functional (CX3CR1GFP/+) or dysfunctional (CX3CR1GFP/GFP). cSVD was induced in mice via the micro-occlusion of cerebral arterioles, and novel immunomodulatory approaches targeting CX3CR1 monocyte production were used. Our findings demonstrate that CX3CR1GFP/+ monocytes transiently infiltrated the ipsilateral hippocampus and were recruited to the microinfarcts 7 days after cSVD, inversely associated with neuronal degeneration and blood-brain barrier (BBB) disruption. Dysfunctional CX3CR1GFP/GFP monocytes failed to infiltrate the injured hippocampus and were associated with exacerbated microinfarctions and accelerated cognitive decline, accompanied with an impaired microvascular structure. Pharmacological stimulation of CX3CR1GFP/+ monocyte generation attenuated neuronal loss and improved cognitive functions by promoting microvascular function and preserving cerebral blood flow (CBF). These changes were associated with elevated levels of pro-angiogenic factors and matrix stabilizers in the blood circulation. The results indicate that non-classical CX3CR1 monocytes promote neurovascular repair after cSVD and constitute a promising target for the development of new therapies.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Monocitos , Ratones , Animales , Monocitos/metabolismo , Barrera Hematoencefálica/metabolismo , Inmunidad , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Ratones Endogámicos C57BL
17.
Stroke ; 43(6): 1647-53, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22426312

RESUMEN

BACKGROUND AND PURPOSE: Methamphetamine is a powerful addictive, which has been associated with ischemic stroke and brain hemorrhage in humans. Whether and how methamphetamine influences the expression of tight junctions and adenosine triphosphate-binding cassette transporters, which have previously been shown to be regulated by apolipoprotein-E (ApoE) under conditions of brain ischemia, was unknown. METHODS: C57BL/6J mice received intraperitoneal injections of methamphetamine (3 times 4 mg/kg separated by 3 hours) either alone or in combination with the ApoE receptor-2 inhibitor receptor-associated protein (40 µg/kg) or the inducible nitric oxide synthase inhibitor 1400W (5 mg/kg). Animals were euthanized 3 or 24 hours after methamphetamine exposure. Tissue responses were evaluated with Western blots, immunoprecipitation, and immunohistochemistry using total brain and cerebral microvessel extracts. RESULTS: Methamphetamine induced a transient activation of stress kinases c-Jun N-terminal kinase 1/2 and p38 in the brain parenchyma and increased intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression on cerebral microvessels without inducing loss of tight junction proteins and without inducing IgG extravasation. Methamphetamine transiently increased the expression of the luminal adenosine triphosphate-binding cassette transporter ABCB1 on cerebral microvessels and reduced the expression of the abluminal transporter ABCC1. Elevated expression of ApoE was noted in the brain parenchyma by methamphetamine, activating ApoE receptor-2 on brain capillaries, deactivating c-Jun N-terminal kinase 1/2 and c-Jun, and regulating ABCB1 and ABCC1 expression. Indeed, ApoE receptor-2 and inducible nitric oxide synthase inhibition prevented the ABCB1 and ABCC1 expression changes. CONCLUSIONS: Acute exposure to methamphetamine at doses comparable to those consumed in drug addiction does not induce tight junction breakdown but differentially regulates adenosine triphosphate-binding cassette transporters through the ApoE/ApoE receptor-2/c-Jun N-terminal kinase 1/2 pathway.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Apolipoproteínas E/metabolismo , Isquemia Encefálica/metabolismo , Estimulantes del Sistema Nervioso Central/efectos adversos , Cerebelo/metabolismo , Circulación Cerebrovascular/efectos de los fármacos , Metanfetamina/efectos adversos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Animales , Isquemia Encefálica/fisiopatología , Capilares/metabolismo , Capilares/fisiopatología , Estimulantes del Sistema Nervioso Central/farmacología , Cerebelo/irrigación sanguínea , Cerebelo/fisiopatología , Humanos , Iminas/farmacología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Metanfetamina/farmacología , Ratones , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/patología , Trastornos Relacionados con Sustancias/fisiopatología , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Neurobiol Dis ; 45(3): 1077-85, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22198574

RESUMEN

Vascular endothelial growth factor (VEGF) has potent angiogenic and neuroprotective effects in the ischemic brain. Its effect on axonal plasticity and neurological recovery in the post-acute stroke phase was unknown. Using behavioral tests combined with anterograde tract tracing studies and with immunohistochemical and molecular biological experiments, we examined effects of a delayed i.c.v. delivery of recombinant human VEGF(165), starting 3 days after stroke, on functional neurological recovery, corticorubral plasticity and inflammatory brain responses in mice submitted to 30 min of middle cerebral artery occlusion. We herein show that the slowly progressive functional improvements of motor grip strength and coordination, which are induced by VEGF, are accompanied by enhanced sprouting of contralesional corticorubral fibres that branched off the pyramidal tract in order to cross the midline and innervate the ipsilesional parvocellular red nucleus. Infiltrates of CD45+ leukocytes were noticed in the ischemic striatum of vehicle-treated mice that closely corresponded to areas exhibiting Iba-1+ activated microglia. VEGF attenuated the CD45+ leukocyte infiltrates at 14 but not 30 days post ischemia and diminished the microglial activation. Notably, the VEGF-induced anti-inflammatory effect of VEGF was associated with a downregulation of a broad set of inflammatory cytokines and chemokines in both brain hemispheres. These data suggest a link between VEGF's immunosuppressive and plasticity-promoting actions that may be important for successful brain remodeling. Accordingly, growth factors with anti-inflammatory action may be promising therapeutics in the post-acute stroke phase.


Asunto(s)
Antiinflamatorios/administración & dosificación , Corteza Cerebral/efectos de los fármacos , Lateralidad Funcional/efectos de los fármacos , Infarto de la Arteria Cerebral Media/complicaciones , Plasticidad Neuronal/efectos de los fármacos , Núcleo Rojo/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Animales , Biotina/análogos & derivados , Edema Encefálico/etiología , Edema Encefálico/prevención & control , Corteza Cerebral/patología , Infarto Cerebral/etiología , Infarto Cerebral/prevención & control , Citocinas/metabolismo , Dextranos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Fuerza de la Mano/fisiología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Inyecciones Intraventriculares/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Degeneración Nerviosa/etiología , Degeneración Nerviosa/prevención & control , Vías Nerviosas/efectos de los fármacos , Compuestos Organometálicos , Compuestos Organofosforados , Núcleo Rojo/patología
19.
Acta Neuropathol ; 123(2): 273-84, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22109109

RESUMEN

Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.


Asunto(s)
Isquemia Encefálica/fisiopatología , Infarto de la Arteria Cerebral Media/fisiopatología , Plasticidad Neuronal/fisiología , Recuperación de la Función/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Motora/efectos de los fármacos , Corteza Motora/patología , Corteza Motora/fisiología , Plasticidad Neuronal/efectos de los fármacos , Recuperación de la Función/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
20.
Brain ; 134(Pt 1): 84-99, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21186263

RESUMEN

The promotion of post-ischaemic motor recovery remains a major challenge in clinical neurology. Recently, plasticity-promoting effects have been described for the growth factor erythropoietin in animal models of neurodegenerative diseases. To elucidate erythropoietin's effects in the post-acute ischaemic brain, we examined how this growth factor influences functional neurological recovery, perilesional tissue remodelling and axonal sprouting of the corticorubral and corticobulbar tracts, when administered intra-cerebroventricularly starting 3 days after 30 min of middle cerebral artery occlusion. Erythropoietin administered at 10 IU/day (but not at 1 IU/day), increased grip strength of the contralesional paretic forelimb and improved motor coordination without influencing spontaneous locomotor activity and exploration behaviour. Neurological recovery by erythropoietin was associated with structural remodelling of ischaemic brain tissue, reflected by enhanced neuronal survival, increased angiogenesis and decreased reactive astrogliosis that resulted in reduced scar formation. Enhanced axonal sprouting from the ipsilesional pyramidal tract into the brainstem was observed in vehicle-treated ischaemic compared with non-ischaemic animals, as shown by injection of dextran amines into both motor cortices. Despite successful remodelling of the perilesional tissue, erythropoietin enhanced axonal sprouting of the contralesional, but not ipsilesional pyramidal tract at the level of the red and facial nuclei. Moreover, molecular biological and histochemical studies revealed broad anti-inflammatory effects of erythropoietin in both hemispheres together with expression changes of plasticity-related molecules that facilitated contralesional axonal growth. Our study establishes a plasticity-promoting effect of erythropoietin after stroke, indicating that erythropoietin acts via recruitment of contralesional rather than of ipsilesional pyramidal tract projections.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Eritropoyetina/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Accidente Cerebrovascular/tratamiento farmacológico , Análisis de Varianza , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/fisiopatología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Conducta Exploratoria/efectos de los fármacos , Fuerza de la Mano/fisiología , Inmunohistoquímica , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Recuperación de la Función/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de Desempeño de Rotación con Aceleración Constante , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA