Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500933

RESUMEN

The search for hydrogen storage materials is a challenging task. In this work, we tried to test metallic glass-based pseudocapacitive material for electrochemical hydrogen storage potential. An alloy ingot with an atomic composition of Ni60Pd20P16B4 was prepared via arc melting of extremely pure elements in an Ar environment. A ribbon sample with a width of 2 mm and a thickness of 20 mm was produced via melt spinning of the prepared ingot. Electrochemical dealloying of the ribbon sample was conducted in 1 M H2SO4 to prepare a nanoporous glassy alloy. The Brunauer-Emmett-Teller (BET) and Langmuir methods were implemented to obtain the total surface area of the nanoporous glassy alloy ribbon. The obtained values were 6.486 m2/g and 15.082 m2/g, respectively. The Dubinin-Astakhov (DA) method was used to calculate pore radius and pore volume; those values were 1.07 nm and 0.09 cm3/g, respectively. Cyclic voltammetry of the dealloyed samples revealed the pseudocapacitive nature of this alloy. Impedance of the dealloying sample was measured at different frequencies through use of electrochemical impedance spectroscopy (EIS). A Cole-Cole plot established a semicircle with a radius of ~6 Ω at higher frequency, indicating low interfacial charge-transfer resistance, and an almost vertical Warburg slope at lower frequency, indicating fast diffusion of ions to the electrode surface. Charge-discharge experiments were performed at different constant currents (75, 100, 125, 150, and 200 mA/g) under a cutoff potential of 2.25 V vs. Ag/AgCl electrode in a 1 M KOH solution. The calculated maximum storage capacity was 950 mAh/g. High-rate dischargeability (HRD) and capacity retention (Sn) for the dealloyed glassy alloy ribbon sample were evaluated. The calculated capacity retention rate at the 40th cycle was 97%, which reveals high stability.

2.
Heliyon ; 6(6): e04085, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32529074

RESUMEN

Hydroxyapatite (HA) nanoparticles derived from mussel shells were prepared using the wet precipitation method and were tested on human mesenchymal and epithelial cells. Shells and HA powder were characterized via X-ray diffraction analysis (XRD) and scanning electron microscopy along with energy dispersive X-ray spectroscopy (SEM/EDX), high resolution transmission electron microscopy (HR-TEM) and Fourier transform infrared spectroscopy (FTIR). The in vitro cytotoxic properties of HA and mussel shells were determined using sulphorhodamine B (SRB) assays for MCF-7 cells (HepG2) and colon (Caco-2) cells. Cell viability tests confirmed the nontoxic effects of synthesized HA and mussel shells on human mesenchymal stem cells (h-MSCs) and epithelial cells. Toxicity values were less than 50% of the cell's validity ratio based on analyses using different concentrations (from 0.01 to 1,000 µg). The results indicate that MSC and epithelial cell attachment and proliferation in the presence of both HA and shell occurred. The proliferation capability was established after 3 and 7 days. SEM images revealed that stem cells and epithelial cells attached to the scaffold indicated full and complete integration between the cells and the material. It seems that due to the ion exchange between bovine serum albumin solutions (BSA) and HA, the FTIR data confirmed an increase in the amide I and amide II bands, which indicates the compatibility of the BSA helix structure. This study sheds light on the importance of merging stem cells and nanomaterials that may lead to improvements in tissue engineering to develop novel treatments for various diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA