Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phys Rev Lett ; 114(5): 054501, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25699447

RESUMEN

A cone-shaped meniscus of electrified fluids, often called a Taylor cone, is observed in rain drops and lightning and employed in various physical instruments and experimental techniques, but the way it evolves from a rounded shape to a cone is a long-standing puzzle. Earth's gravity and microgravity measurements on the meniscus whose height is just shy of droplet ejection reveal that field-driven cusp evolution exhibits a universal self-similarity insensitive to the forcing field and scaled by the fluid surface tension and density. Our work paves the way for dynamic control of field-driven phenomena in fluids.

2.
Membranes (Basel) ; 13(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505007

RESUMEN

The paper presents a new methodology for short-term (5-25 min) benchtop tests to evaluate the effectiveness of magnetic treatment of feed water for reducing mineral scaling on a reverse osmosis (RO) membrane. Scale deposition is measured at a controlled level of salt supersaturation in water flowing through an RO unit in once-through mode. A magnetic water conditioner is tested in a transient flow regime when variations of the permeate flux along the flow path are insignificant. Scale formation under these conditions is governed by salt crystallization on the membrane surface. The proposed method was implemented to investigate the influence of magnetic treatment on gypsum deposition on RO membranes in supersaturated aqueous CaSO4/NaCl solutions. The effects of magnetic water treatment on scale formation under our experimental conditions were found to be statistically insignificant with a confidence level of 95%. However, this outcome should not be considered to negate the potential efficiency of magnetic water treatment in specific applications. The proposed methodology of testing under a controlled level of salt supersaturation will also be useful for evaluating the efficiency of other water treatment technologies.

3.
Electrophoresis ; 32(18): 2559-68, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21853447

RESUMEN

A novel concept of an alternating current (AC) dielectrophoretic filter with a three-dimensional electrode array is presented. A filter is constructed by winding into layers around the core tube two sheets of woven metal wire-mesh with several sheets of woven insulating wire-mesh sandwiched in between. Contrary to conventional dielectrophoretic devices, the proposed design of electrodes generates a high-gradient field over a large working volume by applying several hundred volts at a standard frequency of 60 Hz. The operating principle of filtration is based on our recently developed method of AC dielectrophoretic gating for microfluidics. The filtration efficiency is expressed in terms of two non-dimensional parameters, which describe the combined influence of the particle polarizability and size, the oil viscosity and flow rate, and the field gradient on the particle captivity. The proof-of-concept is tested by measuring the single-pass performance of two filters on positively polarized particles dispersed in engine oil: spherical glass beads, fused aluminum oxide powder, and silicon metal powder, all smaller than the mesh opening. The results obtained are used to consider the potential of using AC dielectrophoretic filtration and provide critical design guidelines for the development of a filter based on the retention capability of challenge particles.


Asunto(s)
Electroforesis/instrumentación , Filtración/instrumentación , Lubricantes/química , Microfluídica/instrumentación , Aceites/química , Óxido de Aluminio , Electrodos , Diseño de Equipo , Filtración/métodos , Vidrio , Microesferas , Tamaño de la Partícula , Viscosidad
4.
Pharmaceutics ; 12(11)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33138033

RESUMEN

We demonstrate the ability to fabricate dosage forms of a poorly water-soluble drug by using wet stirred media milling of a drug powder to produce an aqueous suspension of nanoparticles and then print it onto a porous biocompatible film. Contrary to conventional printing technologies, a deposited material is pulled out from the nozzle. This feature enables printing highly viscous materials with a precise control over the printed volume. Drug (griseofulvin) nanosuspensions prepared by wet media milling were printed onto porous hydroxypropyl methylcellulose films prepared by freeze-drying. The drug particles retained crystallinity and polymorphic form in the course of milling and printing. The versatility of this technique was demonstrated by printing the same amount of nanoparticles onto a film with droplets of different sizes. The mean drug content (0.19-3.80 mg) in the printed films was predicted by the number of droplets (5-100) and droplet volume (0.2-1.0 µL) (R2 = 0.9994, p-value < 10-4). Our results also suggest that for any targeted drug content, the number-volume of droplets could be modulated to achieve acceptable drug content uniformity. Analysis of the model-independent difference and similarity factors showed consistency of drug release profiles from films with a printed suspension. Zero-order kinetics described the griseofulvin release rate from 1.8% up to 82%. Overall, this study has successfully demonstrated that the electro-hydrodynamic drop-on-demand printing of an aqueous drug nanosuspension enables accurate and controllable drug dosing in porous polymer films, which exhibited acceptable content uniformity and reproducible drug release.

5.
NPJ Microgravity ; 4: 21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417085

RESUMEN

Today's trends for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles to prevent formation of a vapor layer over the surface at high overheat. In contrast, this paper presents a new boiling regime that employs a vapor-air bubble residing on a small heater for minutes and driving cold water over the surface to provide high heat flux. Single-bubble boiling of water was investigated under normal gravity and low gravity in parabolic flights. Experiments demonstrated a negligible effect of gravity level on the rate of heat transfer from the heater. Due to self-adjustment of the bubble size, the heat flux provided by boiling rose linearly up with increasing heater temperature and was not affected by a gradually rising water temperature. The fast response and stable operation of single-bubble boiling over a broad range of temperatures pave the way for development of new devices to control heat transfer by forming surface domains with distinct thermal properties and wettability. The bubble lifetime can be adjusted by changing the water temperature. The ability of heating water on millimeter scales far above 100 °C without an autoclave or a powerful laser provides a new approach for processing of biomaterials and chemical reactions.

6.
Biomaterials ; 149: 51-62, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28992510

RESUMEN

The discovery of electric fields in biological tissues has led to efforts in developing technologies utilizing electrical stimulation for therapeutic applications. Native tissues, such as cartilage and bone, exhibit piezoelectric behavior, wherein electrical activity can be generated due to mechanical deformation. Yet, the use of piezoelectric materials have largely been unexplored as a potential strategy in tissue engineering, wherein a piezoelectric biomaterial acts as a scaffold to promote cell behavior and the formation of large tissues. Here we show, for the first time, that piezoelectric materials can be fabricated into flexible, three-dimensional fibrous scaffolds and can be used to stimulate human mesenchymal stem cell differentiation and corresponding extracellular matrix/tissue formation in physiological loading conditions. Piezoelectric scaffolds that exhibit low voltage output, or streaming potential, promoted chondrogenic differentiation and piezoelectric scaffolds with a high voltage output promoted osteogenic differentiation. Electromechanical stimulus promoted greater differentiation than mechanical loading alone. Results demonstrate the additive effect of electromechanical stimulus on stem cell differentiation, which is an important design consideration for tissue engineering scaffolds. Piezoelectric, smart materials are attractive as scaffolds for regenerative medicine strategies due to their inherent electrical properties without the need for external power sources for electrical stimulation.


Asunto(s)
Materiales Biocompatibles/química , Células Madre Mesenquimatosas/citología , Andamios del Tejido , Adolescente , Adulto , Animales , Huesos/citología , Huesos/metabolismo , Cartílago/citología , Adhesión Celular , Técnicas de Cultivo de Célula , Diferenciación Celular , Condrogénesis , Fenómenos Electromagnéticos , Femenino , Humanos , Masculino , Fenómenos Mecánicos , Osteogénesis , Regeneración , Ingeniería de Tejidos , Adulto Joven
7.
J Pharm Sci ; 101(7): 2523-33, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22527973

RESUMEN

Noncontact drop-on-demand (DOD) dosing is a promising strategy for manufacturing of personalized dosage units. However, current DOD methods developed for printing chemically and thermally stable, low-viscosity inks are of limited use for pharmaceuticals due to fundamentally different functional requirements. To overcome their deficiency, we developed a novel electrohydrodynamic (EHD) DOD (Appl, Phys, Lett. 97, 233501, 2010) that operates on fluids of up to 30 Pa·s in viscosity over a wide range of droplet sizes and provides a precise control over the droplet volume. We now evaluate the EHD DOD as a method for fabrication of dosage units by printing drug solutions on porous polymer films prepared by freeze-drying. Experiments were carried out on ibuprofen and griseofulvin, as model poorly water-soluble drugs, polyethylene glycol 400, as a drug carrier, and hydroxypropyl methylcellulose films. The similarities between drug release profiles from different dosage units were assessed by model-independent difference, f(1) , and similarity, f(2) , factors. The results presented show that EHD DOD offers a powerful tool for the evolving field of small-scale pharmaceutical technologies for tailoring medicines to individual patient's needs by printing a vast array of predefined amounts of therapeutics arranged in a specific pattern on a porous film.


Asunto(s)
Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/instrumentación , Preparaciones Farmacéuticas/administración & dosificación , Polímeros/química , Tecnología Farmacéutica/instrumentación , Diseño de Equipo , Liofilización , Porosidad , Solubilidad , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA