Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 326(Pt A): 116615, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395641

RESUMEN

Novel ZnS-Cu7S4 nanohybrid supported on chitosan matrix, as an ideal photocatalyst, was fabricated by the sonochemical method wherein high-resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction (XRD) analysis confirmed the co-existence of both ZnS and Cu7S4; presence of vacancy sites in ZnS was verified by electron paramagnetic resonance (EPR) analysis and their introduction could promote two-photon excitation facilitated visible light response and charge transport/separation. The type II interface is formed in the ZnS-Cu7S4/Chitosan heterojunction owing to interstitial states that promote charge separation. The ZnS-Cu7S4/Chitosan was used for the photodegradation of a pharmaceutical pollutant, p-chlorophenol (PCP); over 98.8% of PCP photodegradation was achieved under visible-light irradiation where the ensued ·O2- and ·OH serve a key role in the photodegradation of PCP. In vitro cytotoxicity studies substantiated that the ZnS-Cu7S4/Chitosan is nontoxic to the ecosystem and human beings and endowed with promising photodegradation properties and accessibility via an environmentally friendly design, bodes well for its potential remediation applications.


Asunto(s)
Quitosano , Humanos , Fotólisis , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA