Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genes (Basel) ; 15(5)2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38790158

RESUMEN

The evolutionary conserved Notch signaling pathway functions as a mediator of direct cell-cell communication between neighboring cells during development. Notch plays a crucial role in various fundamental biological processes in a wide range of tissues. Accordingly, the aberrant signaling of this pathway underlies multiple genetic pathologies such as developmental syndromes, congenital disorders, neurodegenerative diseases, and cancer. Over the last two decades, significant data have shown that the Notch signaling pathway displays a significant function in the mature brains of vertebrates and invertebrates beyond neuronal development and specification during embryonic development. Neuronal connection, synaptic plasticity, learning, and memory appear to be regulated by this pathway. Specific mutations in human Notch family proteins have been linked to several neurodegenerative diseases including Alzheimer's disease, CADASIL, and ischemic injury. Neurodegenerative diseases are incurable disorders of the central nervous system that cause the progressive degeneration and/or death of brain nerve cells, affecting both mental function and movement (ataxia). There is currently a lot of study being conducted to better understand the molecular mechanisms by which Notch plays an essential role in the mature brain. In this study, an in silico analysis of polymorphisms and mutations in human Notch family members that lead to neurodegenerative diseases was performed in order to investigate the correlations among Notch family proteins and neurodegenerative diseases. Particular emphasis was placed on the study of mutations in the Notch3 protein and the structure analysis of the mutant Notch3 protein that leads to the manifestation of the CADASIL syndrome in order to spot possible conserved mutations and interpret the effect of these mutations in the Notch3 protein structure. Conserved mutations of cysteine residues may be candidate pharmacological targets for the potential therapy of CADASIL syndrome.


Asunto(s)
CADASIL , Enfermedades Neurodegenerativas , Polimorfismo de Nucleótido Simple , Receptores Notch , Humanos , CADASIL/genética , CADASIL/metabolismo , CADASIL/patología , Receptores Notch/metabolismo , Receptores Notch/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mutación , Transducción de Señal , Receptor Notch3/genética , Receptor Notch3/metabolismo
2.
Brief Funct Genomics ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605526

RESUMEN

Intermolecular interactions of protein-protein complexes play a principal role in the process of discovering new substances used in the diagnosis and treatment of many diseases. Among such complexes of proteins, we have to mention antibodies; they interact with specific antigens of two genera of single-stranded RNA viruses belonging to the family Filoviridae-Ebolavirus and Marburgvirus; both cause rare but fatal viral hemorrhagic fever in Africa, with pandemic potential. In this research, we conduct studies aimed at the design and evaluation of antibodies targeting the filovirus glycoprotein precursor GP-1,2 to develop potential targets for the pan-filovirus easy-to-use rapid diagnostic tests. The in silico research using the available 3D structure of the natural antibody-antigen complex was carried out to determine the stability of individual protein segments in the process of its formation and maintenance. The computed free binding energy of the complex and its decomposition for all amino acids allowed us to define the residues that play an essential role in the structure and indicated the spots where potential antibodies can be improved. Following that, the study involved targeting six epitopes of the filovirus GP1,2 with two polyclonal antibodies (pABs) and 14 monoclonal antibodies (mABs). The evaluation conducted using Enzyme Immunoassays tested 62 different sandwich combinations of monoclonal antibodies (mAbs), identifying 10 combinations that successfully captured the recombinant GP1,2 (rGP). Among these combinations, the sandwich option (3G2G12* - (rGP) - 2D8F11) exhibited the highest propensity for capturing the rGP antigen.

3.
EMBnet J ; 292024.
Artículo en Inglés | MEDLINE | ID: mdl-38845752

RESUMEN

Breast milk, often referred to as "liquid gold," is a complex biofluid that provides essential nutrients, immune factors, and developmental cues for newborns. Recent advancements in the field of exosome research have shed light on the critical role of exosomes in breast milk. Exosomes are nanosized vesicles that carry bioactive molecules, including proteins, lipids, nucleic acids, and miRNAs. These tiny messengers play a vital role in intercellular communication and are now being recognized as key players in infant health and development. This paper explores the emerging field of milk exosomics, emphasizing the potential of exosome fingerprinting to uncover valuable insights into the composition and function of breast milk. By deciphering the exosomal cargo, we can gain a deeper understanding of how breast milk influences neonatal health and may even pave the way for personalized nutrition strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA