Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 169(2): 326-337.e12, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388414

RESUMEN

Transcription and translation are two main pillars of gene expression. Due to the different timings, spots of action, and mechanisms of regulation, these processes are mainly regarded as distinct and generally uncoupled, despite serving a common purpose. Here, we sought for a possible connection between transcription and translation. Employing an unbiased screen of multiple human promoters, we identified a positive effect of TATA box on translation and a general coupling between mRNA expression and translational efficiency. Using a CRISPR-Cas9-mediated approach, genome-wide analyses, and in vitro experiments, we show that the rate of transcription regulates the efficiency of translation. Furthermore, we demonstrate that m6A modification of mRNAs is co-transcriptional and depends upon the dynamics of the transcribing RNAPII. Suboptimal transcription rates lead to elevated m6A content, which may result in reduced translation. This study uncovers a general and widespread link between transcription and translation that is governed by epigenetic modification of mRNAs.


Asunto(s)
Adenosina/análogos & derivados , Regulación de la Expresión Génica , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/metabolismo , Humanos , Metilación , Iniciación de la Cadena Peptídica Traduccional , ARN Polimerasa II/metabolismo , TATA Box
2.
Mol Cell ; 82(20): 3840-3855.e8, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36270248

RESUMEN

The use of alternative promoters, splicing, and cleavage and polyadenylation (APA) generates mRNA isoforms that expand the diversity and complexity of the transcriptome. Here, we uncovered thousands of previously undescribed 5' uncapped and polyadenylated transcripts (5' UPTs). We show that these transcripts resist exonucleases due to a highly structured RNA and N6-methyladenosine modification at their 5' termini. 5' UPTs appear downstream of APA sites within their host genes and are induced upon APA activation. Strong enrichment in polysomal RNA fractions indicates 5' UPT translational potential. Indeed, APA promotes downstream translation initiation, non-canonical protein output, and consistent changes to peptide presentation at the cell surface. Lastly, we demonstrate the biological importance of 5' UPTs using Bcl2, a prominent anti-apoptotic gene whose entire coding sequence is a 5' UPT generated from 5' UTR-embedded APA sites. Thus, APA is not only accountable for terminating transcripts, but also for generating downstream uncapped RNAs with translation potential and biological impact.


Asunto(s)
Poliadenilación , Isoformas de ARN , Isoformas de ARN/genética , Regiones no Traducidas 5' , Regiones no Traducidas 3'/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Exonucleasas/genética
3.
Mol Cell ; 82(5): 1021-1034.e8, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182478

RESUMEN

How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Composición de Base , Exones/genética , Intrones/genética
4.
Mol Cell ; 78(3): 434-444.e5, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32294471

RESUMEN

Gene expression is regulated by the rates of synthesis and degradation of mRNAs, but how these processes are coordinated is poorly understood. Here, we show that reduced transcription dynamics of specific genes leads to enhanced m6A deposition, preferential activity of the CCR4-Not complex, shortened poly(A) tails, and reduced stability of the respective mRNAs. These effects are also exerted by internal ribosome entry site (IRES) elements, which we found to be transcriptional pause sites. However, when transcription dynamics, and subsequently poly(A) tails, are globally altered, cells buffer mRNA levels by adjusting the expression of mRNA degradation machinery. Stress-provoked global impediment of transcription elongation leads to a dramatic inhibition of the mRNA degradation machinery and massive mRNA stabilization. Accordingly, globally enhanced transcription, such as following B cell activation or glucose stimulation, has the opposite effects. This study uncovers two molecular pathways that maintain balanced gene expression in mammalian cells by linking transcription to mRNA stability.


Asunto(s)
Poli A/genética , ARN Mensajero/metabolismo , Transcripción Genética , Adenosina/análogos & derivados , Animales , Linfocitos B/fisiología , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Humanos , Sitios Internos de Entrada al Ribosoma , Células MCF-7 , Ratones Endogámicos C57BL , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Poli A/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , Receptores CCR4/genética , Receptores CCR4/metabolismo
5.
Am J Hum Genet ; 111(3): 614-617, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38330941

RESUMEN

Age-related hearing loss (ARHL) is a major health concern among the elderly population. It is hoped that increasing our understanding of its underlying pathophysiological processes will lead to the development of novel therapies. Recent genome-wide association studies (GWASs) discovered a few dozen genetic variants in association with elevated risk for ARHL. Integrated analysis of GWAS results and transcriptomics data is a powerful approach for elucidating specific cell types that are involved in disease pathogenesis. Intriguingly, recent studies that applied such bioinformatics approaches to ARHL resulted in disagreeing findings as for the key cell types that are most strongly linked to the genetic pathogenesis of ARHL. These conflicting studies pointed either to cochlear sensory epithelial or to stria vascularis cells as the cell types most prominently involved in the genetic basis of ARHL. Seeking to resolve this discrepancy, we integrated the analysis of four ARHL GWAS datasets with four independent inner-ear single-cell RNA-sequencing datasets. Our analysis clearly points to the cochlear sensory epithelial cells as the key cells for the genetic predisposition to ARHL. We also explain the limitation of the bioinformatics analysis performed by previous studies that led to missing the enrichment for ARHL GWAS signal in sensory epithelial cells. Collectively, we show that cochlear epithelial cells, not stria vascularis cells, are the main inner-ear cells related to the genetic pathogenesis of ARHL.


Asunto(s)
Presbiacusia , Estría Vascular , Anciano , Humanos , Estría Vascular/patología , Estudio de Asociación del Genoma Completo , Cóclea/patología , Presbiacusia/genética , Presbiacusia/patología , Epitelio/patología
6.
Cell ; 149(3): 538-53, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22502866

RESUMEN

Alternative cleavage and polyadenylation (APA) is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown. We developed a reporter-based RNAi screen for APA and identified PABPN1 as a regulator of this process. Genome-wide analysis of APA in human cells showed that loss of PABPN1 resulted in extensive 3' untranslated region shortening. Messenger RNA transcription, stability analyses, and in vitro cleavage assays indicated enhanced usage of proximal cleavage sites (CSs) as the underlying mechanism. Using Cyclin D1 as a test case, we demonstrated that enhanced usage of proximal CSs compromises microRNA-mediated repression. Triplet-repeat expansion in PABPN1 (trePABPN1) causes autosomal-dominant oculopharyngeal muscular dystrophy (OPMD). The expression of trePABPN1 in both a mouse model of OPMD and human cells elicited broad induction of proximal CS usage, linked to binding to endogenous PABPN1 and its sequestration in nuclear aggregates. Our results elucidate a novel function for PABPN1 as a suppressor of APA.


Asunto(s)
Proteína II de Unión a Poli(A)/metabolismo , Poliadenilación , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Línea Celular , Regulación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/metabolismo , Mutación , Proteína II de Unión a Poli(A)/genética , Proteínas de Unión al ARN/metabolismo
7.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37522516

RESUMEN

During embryonic development, tissue-specific transcription factors and chromatin remodelers function together to ensure gradual, coordinated differentiation of multiple lineages. Here, we define this regulatory interplay in the developing retinal pigmented epithelium (RPE), a neuroectodermal lineage essential for the development, function and maintenance of the adjacent retina. We present a high-resolution spatial transcriptomic atlas of the developing mouse RPE and the adjacent ocular mesenchyme obtained by geographical position sequencing (Geo-seq) of a single developmental stage of the eye that encompasses young and more mature ocular progenitors. These transcriptomic data, available online, reveal the key transcription factors and their gene regulatory networks during RPE and ocular mesenchyme differentiation. Moreover, conditional inactivation followed by Geo-seq revealed that this differentiation program is dependent on the activity of SWI/SNF complexes, shown here to control the expression and activity of RPE transcription factors and, at the same time, inhibit neural progenitor and cell proliferation genes. The findings reveal the roles of the SWI/SNF complexes in controlling the intersection between RPE and neural cell fates and the coupling of cell-cycle exit and differentiation.


Asunto(s)
Epitelio Pigmentado de la Retina , Factores de Transcripción , Femenino , Embarazo , Ratones , Animales , Diferenciación Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proliferación Celular/genética , Epitelio/metabolismo
8.
PLoS Biol ; 21(1): e3001924, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649236

RESUMEN

Tissue-specific transcription factors (TFs) control the transcriptome through an association with noncoding regulatory regions (cistromes). Identifying the combination of TFs that dictate specific cell fate, their specific cistromes and examining their involvement in complex human traits remain a major challenge. Here, we focus on the retinal pigmented epithelium (RPE), an essential lineage for retinal development and function and the primary tissue affected in age-related macular degeneration (AMD), a leading cause of blindness. By combining mechanistic findings in stem-cell-derived human RPE, in vivo functional studies in mice and global transcriptomic and proteomic analyses, we revealed that the key developmental TFs LHX2 and OTX2 function together in transcriptional module containing LDB1 and SWI/SNF (BAF) to regulate the RPE transcriptome. Importantly, the intersection between the identified LHX2-OTX2 cistrome with published expression quantitative trait loci, ATAC-seq data from human RPE, and AMD genome-wide association study (GWAS) data, followed by functional validation using a reporter assay, revealed a causal genetic variant that affects AMD risk by altering TRPM1 expression in the RPE through modulation of LHX2 transcriptional activity on its promoter. Taken together, the reported cistrome of LHX2 and OTX2, the identified downstream genes and interacting co-factors reveal the RPE transcription module and uncover a causal regulatory risk single-nucleotide polymorphism (SNP) in the multifactorial common blinding disease AMD.


Asunto(s)
Degeneración Macular , Canales Catiónicos TRPM , Humanos , Ratones , Animales , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Estudio de Asociación del Genoma Completo , Proteómica , Degeneración Macular/genética , Degeneración Macular/metabolismo , Diferenciación Celular , Epitelio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Canales Catiónicos TRPM/genética , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo
9.
Am J Hum Genet ; 109(6): 1077-1091, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35580588

RESUMEN

Hearing loss is one of the top contributors to years lived with disability and is a risk factor for dementia. Molecular evidence on the cellular origins of hearing loss in humans is growing. Here, we performed a genome-wide association meta-analysis of clinically diagnosed and self-reported hearing impairment on 723,266 individuals and identified 48 significant loci, 10 of which are novel. A large proportion of associations comprised missense variants, half of which lie within known familial hearing loss loci. We used single-cell RNA-sequencing data from mouse cochlea and brain and mapped common-variant genomic results to spindle, root, and basal cells from the stria vascularis, a structure in the cochlea necessary for normal hearing. Our findings indicate the importance of the stria vascularis in the mechanism of hearing impairment, providing future paths for developing targets for therapeutic intervention in hearing loss.


Asunto(s)
Sordera , Pérdida Auditiva , Animales , Cóclea , Estudio de Asociación del Genoma Completo , Pérdida Auditiva/genética , Humanos , Ratones , Estría Vascular
10.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265251

RESUMEN

MOTIVATION: Polygenic risk scores (PRSs) predict individuals' genetic risk of developing complex diseases. They summarize the effect of many variants discovered in genome-wide association studies (GWASs). However, to date, large GWASs exist primarily for the European population and the quality of PRS prediction declines when applied to other ethnicities. Genetic profiling of individuals in the discovery set (on which the GWAS was performed) and target set (on which the PRS is applied) is typically done by SNP arrays that genotype a fraction of common SNPs. Therefore, a key step in GWAS analysis and PRS calculation is imputing untyped SNPs using a panel of fully sequenced individuals. The imputation results depend on the ethnic composition of the imputation panel. Imputing genotypes with a panel of individuals of the same ethnicity as the genotyped individuals typically improves imputation accuracy. However, there has been no systematic investigation into the influence of the ethnic composition of imputation panels on the accuracy of PRS predictions when applied to ethnic groups that differ from the population used in the GWAS. RESULTS: We estimated the effect of imputation of the target set on prediction accuracy of PRS when the discovery and the target sets come from different ethnic groups. We analyzed binary phenotypes on ethnically distinct sets from the UK Biobank and other resources. We generated ethnically homogenous panels, imputed the target sets, and generated PRSs. Then, we assessed the prediction accuracy obtained from each imputation panel. Our analysis indicates that using an imputation panel matched to the ethnicity of the target population yields only a marginal improvement and only under specific conditions. AVAILABILITY AND IMPLEMENTATION: The source code used for executing the analyses is this paper is available at https://github.com/Shamir-Lab/PRS-imputation-panels.


Asunto(s)
Puntuación de Riesgo Genético , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Genotipo , Fenotipo , Programas Informáticos , Polimorfismo de Nucleótido Simple
11.
PLoS Biol ; 19(11): e3001445, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758021

RESUMEN

Cochlear supporting cells (SCs) are glia-like cells critical for hearing function. In the neonatal cochlea, the greater epithelial ridge (GER) is a mitotically quiescent and transient organ, which has been shown to nonmitotically regenerate SCs. Here, we ablated Lgr5+ SCs using Lgr5-DTR mice and found mitotic regeneration of SCs by GER cells in vivo. With lineage tracing, we show that the GER houses progenitor cells that robustly divide and migrate into the organ of Corti to replenish ablated SCs. Regenerated SCs display coordinated calcium transients, markers of the SC subtype inner phalangeal cells, and survive in the mature cochlea. Via RiboTag, RNA-sequencing, and gene clustering algorithms, we reveal 11 distinct gene clusters comprising markers of the quiescent and damaged GER, and damage-responsive genes driving cell migration and mitotic regeneration. Together, our study characterizes GER cells as mitotic progenitors with regenerative potential and unveils their quiescent and damaged translatomes.


Asunto(s)
Linaje de la Célula/genética , Cóclea/citología , Estudios de Asociación Genética , Mitosis , Biosíntesis de Proteínas , Regeneración/genética , Células Madre/citología , Células Madre/metabolismo , Animales , Diferenciación Celular , Supervivencia Celular , Células Epiteliales/citología , Regulación de la Expresión Génica , Integrasas/metabolismo , Ratones , Familia de Multigenes , Receptores Acoplados a Proteínas G/metabolismo
12.
Nature ; 563(7733): 696-700, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464345

RESUMEN

The sensory cells that are responsible for hearing include the cochlear inner hair cells (IHCs) and outer hair cells (OHCs), with the OHCs being necessary for sound sensitivity and tuning1. Both cell types are thought to arise from common progenitors; however, our understanding of the factors that control the fate of IHCs and OHCs remains limited. Here we identify Ikzf2 (which encodes Helios) as an essential transcription factor in mice that is required for OHC functional maturation and hearing. Helios is expressed in postnatal mouse OHCs, and in the cello mouse model a point mutation in Ikzf2 causes early-onset sensorineural hearing loss. Ikzf2cello/cello OHCs have greatly reduced prestin-dependent electromotile activity, a hallmark of OHC functional maturation, and show reduced levels of crucial OHC-expressed genes such as Slc26a5 (which encodes prestin) and Ocm. Moreover, we show that ectopic expression of Ikzf2 in IHCs: induces the expression of OHC-specific genes; reduces the expression of canonical IHC genes; and confers electromotility to IHCs, demonstrating that Ikzf2 can partially shift the IHC transcriptome towards an OHC-like identity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Células Ciliadas Auditivas Externas/citología , Células Ciliadas Auditivas Externas/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Transcriptoma/genética , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Nucleic Acids Res ; 50(10): e55, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35100425

RESUMEN

Spatiotemporal gene expression patterns are governed to a large extent by the activity of enhancer elements, which engage in physical contacts with their target genes. Identification of enhancer-promoter (EP) links that are functional only in a specific subset of cell types is a key challenge in understanding gene regulation. We introduce CT-FOCS (cell type FOCS), a statistical inference method that uses linear mixed effect models to infer EP links that show marked activity only in a single or a small subset of cell types out of a large panel of probed cell types. Analyzing 808 samples from FANTOM5, covering 472 cell lines, primary cells and tissues, CT-FOCS inferred such EP links more accurately than recent state-of-the-art methods. Furthermore, we show that strictly cell type-specific EP links are very uncommon in the human genome.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Genoma Humano , Humanos , Análisis de la Célula Individual
14.
Development ; 147(17)2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917668

RESUMEN

Despite the known importance of the transcription factors ATOH1, POU4F3 and GFI1 in hair cell development and regeneration, their downstream transcriptional cascades in the inner ear remain largely unknown. Here, we have used Gfi1cre;RiboTag mice to evaluate changes to the hair cell translatome in the absence of GFI1. We identify a systematic downregulation of hair cell differentiation genes, concomitant with robust upregulation of neuronal genes in the GFI1-deficient hair cells. This includes increased expression of neuronal-associated transcription factors (e.g. Pou4f1) as well as transcription factors that serve dual roles in hair cell and neuronal development (e.g. Neurod1, Atoh1 and Insm1). We further show that the upregulated genes are consistent with the NEUROD1 regulon and are normally expressed in hair cells prior to GFI1 onset. Additionally, minimal overlap of differentially expressed genes in auditory and vestibular hair cells suggests that GFI1 serves different roles in these systems. From these data, we propose a dual mechanism for GFI1 in promoting hair cell development, consisting of repression of neuronal-associated genes as well as activation of hair cell-specific genes required for normal functional maturation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células Ciliadas Auditivas Internas/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/genética , Células Ciliadas Auditivas Internas/citología , Ratones , Ratones Transgénicos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor de Transcripción Brn-3A/genética , Factor de Transcripción Brn-3A/metabolismo , Factores de Transcripción/genética
15.
Proc Biol Sci ; 290(1995): 20230407, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36987635

RESUMEN

Nutrient deprivation (starvation) induced by fasting and hypercaloric regimens are stress factors that can influence cell and tissue homeostasis in mammals. One of the key cellular responses to changes in nutrient availability is the cell survival pathway autophagy. While there has been much research into the protein networks regulating autophagy, less is known about the gene expression networks involved in this fundamental process. Here, we applied a network algorithm designed to analyse omics datasets, to identify sub-networks that are enriched for induced genes in response to starvation. This enabled us to identify two prominent active modules, one composed of key stress-induced transcription factors, including members of the Jun, Fos and ATF families, and the other comprising autophagosome sub-network genes, including ULK1. The results were validated in the brain, liver and muscle of fasting mice. Moreover, differential expression analysis of autophagy genes in the brain, liver and muscle of high-fat diet-exposed mice showed significant suppression of GABARAPL1 in the liver. Finally, our data provide a resource that may facilitate the future identification of regulators of autophagy.


Asunto(s)
Autofagia , Inanición , Animales , Ratones , Autofagia/fisiología , Redes Reguladoras de Genes , Mamíferos
16.
Bioinformatics ; 38(8): 2364-2366, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35139202

RESUMEN

MOTIVATION: Active module identification (AMI) is an essential step in many omics analyses. Such algorithms receive a gene network and a gene activity profile as input and report subnetworks that show significant over-representation of accrued activity signal ('active modules'). Such modules can point out key molecular processes in the analyzed biological conditions. RESULTS: We recently introduced a novel AMI algorithm called DOMINO and demonstrated that it detects active modules that capture biological signals with markedly improved rate of empirical validation. Here, we provide an online server that executes DOMINO, making it more accessible and user-friendly. To help the interpretation of solutions, the server provides GO enrichment analysis, module visualizations and accessible output formats for customized downstream analysis. It also enables running DOMINO with various gene identifiers of different organisms. AVAILABILITY AND IMPLEMENTATION: The server is available at http://domino.cs.tau.ac.il. Its codebase is available at https://github.com/Shamir-Lab.


Asunto(s)
Algoritmos , Programas Informáticos , Computadores , Redes Reguladoras de Genes , Internet
17.
PLoS Comput Biol ; 18(3): e1009908, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35316269

RESUMEN

To date, genome-wide association studies have identified thousands of statistically-significant associations between genetic variants, and phenotypes related to a myriad of traits and diseases. A key goal for human-genetics research is to translate these associations into functional mechanisms. Popular gene-set analysis tools, like MAGMA, map variants to genes they might affect, and then integrate genome-wide association study data (that is, variant-level associations for a phenotype) to score genes for association with a phenotype. Gene scores are subsequently used in competitive gene-set analyses to identify biological processes that are enriched for phenotype association. By default, variants are mapped to genes in their proximity. However, many variants that affect phenotypes are thought to act at regulatory elements, which can be hundreds of kilobases away from their target genes. Thus, we explored the idea of augmenting a proximity-based mapping scheme with publicly-available datasets of regulatory interactions. We used MAGMA to analyze genome-wide association study data for ten different phenotypes, and evaluated the effects of augmentation by comparing numbers, and identities, of genes and gene sets detected as statistically significant between mappings. We detected several pitfalls and confounders of such "augmented analyses", and introduced ways to control for them. Using these controls, we demonstrated that augmentation with datasets of regulatory interactions only occasionally strengthened the enrichment for phenotype association amongst (biologically-relevant) gene sets for different phenotypes. Still, in such cases, genes and regulatory elements responsible for the improvement could be pinpointed. For instance, using brain regulatory-interactions for augmentation, we were able to implicate two acetylcholine receptor subunits involved in post-synaptic chemical transmission, namely CHRNB2 and CHRNE, in schizophrenia. Collectively, our study presents a critical approach for integrating regulatory interactions into gene-set analyses for genome-wide association study data, by introducing various controls to distinguish genuine results from spurious discoveries.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esquizofrenia , Pruebas Genéticas , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética
18.
RNA Biol ; 20(1): 629-640, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-37602850

RESUMEN

The peripheral and central auditory subsystems together form a complex sensory network that allows an organism to hear. The genetic programs of the two subsystems must therefore be tightly coordinated during development. Yet, their interactions and common expression pathways have never been systematically explored. MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression and are essential for normal development of the auditory system. We performed mRNA and small-RNA sequencing of organs from both auditory subsystems at three critical developmental timepoints (E16, P0, P16) to obtain a comprehensive and unbiased insight of their expression profiles. Our analysis reveals common and organ-specific expression patterns for differentially regulated mRNAs and miRNAs, which could be clustered with a particular selection of functions such as inner ear development, Wnt signalling, K+ transport, and axon guidance, based on gene ontology. Bioinformatics detected enrichment of predicted targets of specific miRNAs in the clusters and predicted regulatory interactions by monitoring opposite trends of expression of miRNAs and their targets. This approach identified six miRNAs as strong regulatory candidates for both subsystems. Among them was miR-96, an established critical factor for proper development in both subsystems, demonstrating the strength of our approach. We suggest that other miRNAs identified by this analysis are also common effectors of proper hearing acquirement. This first combined comprehensive analysis of the developmental program of the peripheral and central auditory systems provides important data and bioinformatics insights into the shared genetic program of the two sensory subsystems and their regulation by miRNAs.


Asunto(s)
MicroARNs , Complejo Olivar Superior , Cóclea , Biología Computacional , Ontología de Genes , MicroARNs/genética , ARN Mensajero/genética
20.
PLoS Genet ; 16(8): e1008977, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32804959

RESUMEN

Alternative polyadenylation (APA) is emerging as a widespread regulatory layer since the majority of human protein-coding genes contain several polyadenylation (p(A)) sites in their 3'UTRs. By generating isoforms with different 3'UTR length, APA potentially affects mRNA stability, translation efficiency, nuclear export, and cellular localization. Polyadenylation sites are regulated by adjacent RNA cis-regulatory elements, the principals among them are the polyadenylation signal (PAS) AAUAAA and its main variant AUUAAA, typically located ~20-nt upstream of the p(A) site. Mutations in PAS and other auxiliary poly(A) cis-elements in the 3'UTR of several genes have been shown to cause human Mendelian diseases, and to date, only a few common SNPs that regulate APA were associated with complex diseases. Here, we systematically searched for SNPs that affect gene expression and human traits by modulation of 3'UTR APA. First, focusing on the variants most likely to exert the strongest effect, we identified 2,305 SNPs that interrupt the canonical PAS or its main variant. Implementing pA-QTL tests using GTEx RNA-seq data, we identified 330 PAS SNPs (called PAS pA-QTLs) that were significantly associated with the usage of their p(A) site. As expected, PAS-interrupting alleles were mostly linked with decreased cleavage at their p(A) site and the consequential 3'UTR lengthening. However, interestingly, in ~10% of the cases, the PAS-interrupting allele was associated with increased usage of an upstream p(A) site and 3'UTR shortening. As an indication of the functional effects of these PAS pA-QTLs on gene expression and complex human traits, we observed for few dozens of them marked colocalization with eQTL and/or GWAS signals. The PAS-interrupting alleles linked with 3'UTR lengthening were also strongly associated with decreased gene expression, indicating that shorter isoforms generated by APA are generally more stable than longer ones. Last, we carried out an extended, genome-wide analysis of 3'UTR variants and detected thousands of additional pA-QTLs having weaker effects compared to the PAS pA-QTLs.


Asunto(s)
Polimorfismo de Nucleótido Simple/genética , Señales de Poliadenilación de ARN 3'/genética , Estabilidad del ARN/genética , Regulación de la Expresión Génica/genética , Humanos , Poli A , Poliadenilación/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA