Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Am J Physiol Cell Physiol ; 322(1): C73-C85, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34817269

RESUMEN

In this study, we have looked for an optimum media glucose concentration and compared glucose consumption in three vascular cell types, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs) with or without angiotensin II (AngII) stimulation. In a subconfluent 6-well experiment in 1 mL DMEM with a standard low (100 mg/dL), a standard high (450 mg/dL), or a mixed middle (275 mg/dL) glucose concentration, steady and significant glucose consumption was observed in all cell types. After 48-h incubation, media that contained low glucose was reduced to almost 0 mg/dL, media that contained high glucose remained significantly higher at ∼275 mg/dL, and media that contained middle glucose remained closer to physiological range. AngII treatment enhanced glucose consumption in AFs and VSMCs but not in ECs. Enhanced extracellular acidification rate by AngII was also observed in AFs. In AFs, AngII induction of target proteins at 48 h varied depending on the glucose concentration used. In low glucose media, induction of glucose regulatory protein 78 or hexokinase II was highest, whereas induction of VCAM-1 was lowest. Utilization of specific inhibitors further suggests essential roles of angiotensin II type-1 receptor and glycolysis in AngII-induced fibroblast activation. Overall, this study demonstrates a high risk of hypo- or hyperglycemic conditions when standard low or high glucose media is used with vascular cells. Moreover, these conditions may significantly alter experimental outcomes. Media glucose concentration should be monitored during any culture experiments and utilization of middle glucose media is recommended for all vascular cell types.


Asunto(s)
Células Endoteliales/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/efectos de los fármacos , Humanos , Masculino , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
2.
Cell Mol Life Sci ; 78(9): 4161-4187, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33575814

RESUMEN

A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.


Asunto(s)
Proteínas ADAM/metabolismo , Proteína ADAM17/metabolismo , Enfermedades Cardiovasculares/patología , Angiotensina II/metabolismo , Animales , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Enfermedades Cardiovasculares/metabolismo , Citocinas/metabolismo , Humanos , Hipertensión/metabolismo , Hipertensión/patología , Transducción de Señal
3.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916794

RESUMEN

Cardiovascular disease (CVD) is a prevalent issue in the global aging population. Premature vascular aging such as elevated arterial stiffness appears to be a major risk factor for CVD. Vascular smooth muscle cells (VSMCs) are one of the essential parts of arterial pathology and prone to stress-induced senescence. The pervasiveness of senescent VSMCs in the vasculature increases with age and can be further expedited by various stressing events such as oxidative stress, mitochondria dysfunction, endoplasmic reticulum stress, and chronic inflammation. Angiotensin II (AngII) can induce many of these responses in VSMCs and is thus considered a key regulator of VSMC senescence associated with CVD. Understanding the precise mechanisms and consequences of senescent cell accumulation may uncover a new generation of therapies including senolytic and senomorphic compounds against CVD. Accordingly, in this review article, we discuss potential molecular mechanisms of VSMC senescence such as those induced by AngII and the therapeutic manipulations of senescence to control age-related CVD and associated conditions such as by senolytic.


Asunto(s)
Envejecimiento/fisiología , Angiotensina II/fisiología , Enfermedades Cardiovasculares/prevención & control , Terapia Molecular Dirigida , Miocitos del Músculo Liso/fisiología , Animales , Senescencia Celular , Humanos , Sistema Renina-Angiotensina
4.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679678

RESUMEN

Investigations of vascular smooth muscle cell (VSMC) phenotypic modulation due to angiotensin II (AngII) stimulation are important for understanding molecular mechanisms contributing to hypertension and associated vascular pathology. AngII induces endoplasmic reticulum (ER) stress in VSMCs, which has been implicated in hypertensive vascular remodeling. Under ER stress, 78 kDa glucose-regulated protein (GRP78) acts as an endogenous chaperone, as well as a master controller of unfolded protein response (UPR) to maintain protein quality control. However, the potential downstream consequences of ER stress induced by AngII on protein quality control and pro-inflammatory phenotype in VSMCs remain elusive. This study aims to identify protein aggregation as evidence of the disruption of protein quality control in VSMCs, and to test the hypothesis that preservation of proteostasis by overexpression of GRP78 can attenuate the AngII-induced pro-inflammatory phenotype in VSMCs. Increases in protein aggregation and enhanced UPR were observed in VSMCs exposed to AngII, which were mitigated by overexpression of GRP78. Moreover, GRP78 overexpression attenuated enhanced monocyte adhesion to VSMCs induced by AngII. Our results thus indicate that the prevention of protein aggregation can potentially mitigate an inflammatory phenotype in VSMCs, which may suggest an alternative therapy for the treatment of AngII-associated vascular disorders.


Asunto(s)
Angiotensina II/metabolismo , Adhesión Celular , Proteínas de Choque Térmico/metabolismo , Monocitos/citología , Músculo Liso Vascular/citología , Animales , Línea Celular , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Glucosa/metabolismo , Proteínas de Choque Térmico/genética , Masculino , Monocitos/metabolismo , Músculo Liso Vascular/metabolismo , Agregado de Proteínas , Proteostasis , Ratas Sprague-Dawley , Regulación hacia Arriba , Remodelación Vascular
5.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32354103

RESUMEN

Angiotensin II (AngII) has a crucial role in cardiovascular pathologies, including endothelial inflammation and premature vascular aging. However, the precise molecular mechanism underlying aging-related endothelial inflammation induced by AngII remains elusive. Here, we have tested a hypothesis in cultured rat aortic endothelial cells (ECs) that the removal of AngII-induced senescent cells, preservation of proteostasis, or inhibition of mitochondrial fission attenuates the pro-inflammatory EC phenotype. AngII stimulation in ECs resulted in cellular senescence assessed by senescence-associated ß galactosidase activity. The number of ß galactosidase-positive ECs induced by AngII was attenuated by treatment with a senolytic drug ABT737 or the chemical chaperone 4-phenylbutyrate. Monocyte adhesion assay revealed that the pro-inflammatory phenotype in ECs induced by AngII was alleviated by these treatments. AngII stimulation also increased mitochondrial fission in ECs, which was mitigated by mitochondrial division inhibitor-1. Pretreatment with mitochondrial division inhibitor-1 attenuated AngII-induced senescence and monocyte adhesion in ECs. These findings suggest that mitochondrial fission and endoplasmic reticulum stress have causative roles in endothelial senescence-associated inflammatory phenotype induced by AngII exposure, thus providing potential therapeutic targets in age-related cardiovascular diseases.


Asunto(s)
Angiotensina II/farmacología , Células Endoteliales/citología , Mitocondrias/metabolismo , Monocitos/citología , Animales , Compuestos de Bifenilo/farmacología , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Monocitos/efectos de los fármacos , Nitrofenoles/farmacología , Fenotipo , Fenilbutiratos/farmacología , Piperazinas/farmacología , Proteostasis , Ratas , Sulfonamidas/farmacología , Células THP-1
6.
J Mol Cell Cardiol ; 105: 38-48, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28257760

RESUMEN

The transformation of vascular smooth muscle cells [VSMC] into foam cells leading to increased plaque size and decreased stability is a key, yet understudied step in atherogenesis. We reported that Interleukin-19 (IL-19), a novel, anti-inflammatory cytokine, attenuates atherosclerosis by anti-inflammatory effects on VSMC. In this work we report that IL-19 induces expression of miR133a, a muscle-specific miRNA, in VSMC. Although previously unreported, we report that miR133a can target and reduce mRNA abundance, mRNA stability, and protein expression of Low Density Lipoprotein Receptor Adaptor Protein 1, (LDLRAP1), an adaptor protein which functions to internalize the LDL receptor. Mutations in this gene lead to LDL receptor malfunction and cause the Autosomal Recessive Hypercholesterolemia (ARH) disorder in humans. Herein we show that IL-19 reduces lipid accumulation in VSMC, and LDLRAP1 expression and oxLDL uptake in a miR133a-dependent mechanism. We show that LDLRAP1 is expressed in plaque and neointimal VSMC of mouse and human injured arteries. Transfection of miR133a and LDLRAP1 siRNA into VSMC reduces their proliferation and uptake of oxLDL. miR133a is significantly increased in plasma from hyperlipidemic compared with normolipidemic patients. Expression of miR133a in IL-19 stimulated VSMC represents a previously unrecognized link between vascular lipid metabolism and inflammation, and may represent a therapeutic opportunity to combat vascular inflammatory diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Células Endoteliales/metabolismo , Interleucinas/metabolismo , Lipoproteínas LDL/metabolismo , MicroARNs/genética , Miocitos del Músculo Liso/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Proliferación Celular , Células Cultivadas , Colesterol/metabolismo , Regulación de la Expresión Génica , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Ratones , Interferencia de ARN , ARN Mensajero/genética
7.
Glob Chang Biol ; 22(9): 2997-3012, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27038309

RESUMEN

Climate change and forest disturbances are threatening the ability of forested mountain watersheds to provide the clean, reliable, and abundant fresh water necessary to support aquatic ecosystems and a growing human population. Here, we used 76 years of water yield, climate, and field plot vegetation measurements in six unmanaged, reference watersheds in the southern Appalachian Mountains of North Carolina, USA to determine whether water yield has changed over time, and to examine and attribute the causal mechanisms of change. We found that annual water yield increased in some watersheds from 1938 to the mid-1970s by as much as 55%, but this was followed by decreases up to 22% by 2013. Changes in forest evapotranspiration were consistent with, but opposite in direction to the changes in water yield, with decreases in evapotranspiration up to 31% by the mid-1970s followed by increases up to 29% until 2013. Vegetation survey data showed commensurate reductions in forest basal area until the mid-1970s and increases since that time accompanied by a shift in dominance from xerophytic oak and hickory species to several mesophytic species (i.e., mesophication) that use relatively more water. These changes in forest structure and species composition may have decreased water yield by as much as 18% in a given year since the mid-1970s after accounting for climate. Our results suggest that changes in climate and forest structure and species composition in unmanaged forests brought about by disturbance and natural community dynamics over time can result in large changes in water supply.


Asunto(s)
Cambio Climático , Bosques , Región de los Apalaches , North Carolina , Árboles , Agua
8.
Glob Chang Biol ; 21(12): 4627-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26195014

RESUMEN

Climate change will affect tree species growth and distribution; however, under the same climatic conditions species may differ in their response according to site conditions. We evaluated the climate-driven patterns of growth for six dominant deciduous tree species in the southern Appalachians. We categorized species into two functional groups based on their stomatal regulation and xylem architecture: isohydric, diffuse porous and anisohydric, ring porous. We hypothesized that within the same climatic regime: (i) species-specific differences in growth will be conditional on topographically mediated soil moisture availability; (ii) in extreme drought years, functional groups will have markedly different growth responses; and (iii) multiple hydroclimate variables will have direct and indirect effects on growth for each functional group. We used standardized tree-ring chronologies to examine growth of diffuse-porous (Acer, Liriodendron, and Betula) and ring-porous (Quercus) species vs. on-site climatic data from 1935 to 2003. Quercus species growing on upslope sites had higher basal area increment (BAI) than Quercus species growing on mesic, cove sites; whereas, Acer and Liriodendron had lower BAI on upslope compared to cove sites. Diffuse-porous species were more sensitive to climate than ring porous, especially during extreme drought years. Across functional groups, radial growth was more sensitive to precipitation distribution, such as small storms and dry spell length (DSL), rather than the total amount of precipitation. Based on structural equation modeling, diffuse-porous species on upslope sites were the most sensitive to multiple hydroclimate variables (r(2)  = 0.46), while ring-porous species on upslope sites were the least sensitive (r(2)  = 0.32). Spring precipitation, vapor pressure deficit, and summer storms had direct effects on summer AET/P, and summer AET/P, growing season small storms and DSL partially explained growth. Decreasing numbers of small storms and extending the days between rainfall events will result in significant growth reduction, even in regions with relatively high total annual rainfall.


Asunto(s)
Clima , Bosques , Árboles/crecimiento & desarrollo , Cambio Climático , North Carolina , Estaciones del Año , Xilema/anatomía & histología
9.
Clin Sci (Lond) ; 128(9): 559-65, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25531554

RESUMEN

Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and ß-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress.


Asunto(s)
Aorta Abdominal/efectos de los fármacos , Aneurisma de la Aorta Abdominal/prevención & control , Receptores ErbB/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Aminopropionitrilo , Angiotensina II , Animales , Aorta Abdominal/enzimología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/enzimología , Rotura de la Aorta/enzimología , Rotura de la Aorta/prevención & control , Células Cultivadas , Citoprotección , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib , Matriz Extracelular/metabolismo , Humanos , Interleucina-6/metabolismo , Masculino , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/enzimología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Factores de Tiempo
10.
Clin Sci (Lond) ; 126(11): 785-94, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24329494

RESUMEN

Although AngII (angiotensin II) and its receptor AT1R (AngII type 1 receptor) have been implicated in AAA (abdominal aortic aneurysm) formation, the proximal signalling events primarily responsible for AAA formation remain uncertain. Caveolae are cholesterol-rich membrane microdomains that serve as a signalling platform to facilitate the temporal and spatial localization of signal transduction events, including those stimulated by AngII. Cav1 (caveolin 1)-enriched caveolae in vascular smooth muscle cells mediate ADAM17 (a disintegrin and metalloproteinase 17)-dependent EGFR (epidermal growth factor receptor) transactivation, which is linked to vascular remodelling induced by AngII. In the present study, we have tested our hypothesis that Cav1 plays a critical role for the development of AAA at least in part via its specific alteration of AngII signalling within caveolae. Cav1-/- mice and the control wild-type mice were co-infused with AngII and ß-aminopropionitrile to induce AAA. We found that Cav1-/- mice with the co-infusion did not develop AAA compared with control mice in spite of hypertension. We found an increased expression of ADAM17 and enhanced phosphorylation of EGFR in AAA. These events were markedly attenuated in Cav1-/- aortas with the co-infusion. Furthermore, aortas from Cav1-/- mice with the co-infusion showed less endoplasmic reticulum stress, oxidative stress and inflammatory responses compared with aortas from control mice. Cav1 silencing in cultured vascular smooth muscle cells prevented AngII-induced ADAM17 induction and activation. In conclusion, Cav1 appears to play a critical role in the formation of AAA and associated endoplasmic reticulum/oxidative stress, presumably through the regulation of caveolae compartmentalized signals induced by AngII.


Asunto(s)
Angiotensina II/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Caveolina 1/metabolismo , Regulación de la Expresión Génica , Proteína-Lisina 6-Oxidasa/antagonistas & inhibidores , Proteínas ADAM/metabolismo , Proteína ADAM17 , Adenoviridae/metabolismo , Animales , Células Cultivadas , Silenciador del Gen , Factor de Crecimiento Similar a EGF de Unión a Heparina , Inmunohistoquímica , Inflamación , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos del Músculo Liso/citología , Estrés Oxidativo , Regiones Promotoras Genéticas , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Sistema Renina-Angiotensina , Transducción de Señal
11.
J Mol Cell Cardiol ; 62: 1-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23688779

RESUMEN

Small interfering RNA (siRNA) mediated gene silencing has been utilized as a powerful molecular tool to study the functional significance of a specific protein. However, due to transient gene silencing and insufficient transfection efficiency, this approach can be problematic in primary cell culture such as vascular smooth muscle cells. To overcome this weakness, we utilized an adenoviral-encoded microRNA (miRNA)-embedded siRNA "mi/siRNA"-based RNA interference. Here, we report the results of silencing a disintegrin and metalloprotease 17 (ADAM17) in cultured rat vascular smooth muscle cells and its functional mechanism in angiotensin II signal transduction. 3 distinct mi/siRNA sequences targeting rat ADAM17 were inserted into pAd/CMV/V5-DEST and adenoviral solutions were obtained. Nearly 90% silencing of ADAM17 was achieved when vascular smooth muscle cells were infected with 100 multiplicity of infection of each ADAM17 mi/siRNA encoding adenovirus for 3days. mi/siRNA-ADAM17 but not mi/siRNA-control inhibited angiotensin II-induced epidermal growth factor receptor trans-activation and subsequent extracellular signal-regulated kinase activation and hypertrophic response in the cells. mi/siRNA-ADAM17 also inhibited angiotensin II-induced heparin-binding epidermal growth factor-like factor shedding. This inhibition was rescued with co-infection of adenovirus encoding mouse ADAM17 but not by its cytosolic domain deletion mutant or cytosolic Y702F mutant. As expected, angiotensin II induced tyrosine phosphorylation of ADAM17 in the cells. In conclusion, ADAM17 activation via its tyrosine phosphorylation contributes to heparin-binding epidermal growth factor-like factor shedding and subsequent growth promoting signals induced by angiotensin II in vascular smooth muscle cells. An artificial mi/siRNA-based adenoviral approach appears to be a reliable gene-silencing strategy for signal transduction research in primary cultured vascular cells.


Asunto(s)
Proteínas ADAM/genética , Adenoviridae/genética , Angiotensina II/genética , MicroARNs/genética , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Proteína ADAM17 , Animales , Línea Celular , Células Cultivadas , Humanos , Immunoblotting , Inmunoprecipitación , Masculino , ARN Interferente Pequeño/genética , Ratas
12.
J Am Heart Assoc ; 11(23): e028201, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36444851

RESUMEN

Background Investigations into alternative treatments for hypertension are necessary because current treatments cannot fully reduce the risk for the development of cardiovascular diseases. Chronic activation of unfolded protein response attributable to the endoplasmic reticulum stress has been proposed as a potential therapeutic target for hypertension and associated vascular remodeling. Triggered by the accumulation of misfolded proteins, chronic unfolded protein response leads to downstream signaling of cellular inflammation and dysfunction. Here, we have tested our hypothesis that a novel chemical chaperone, 3-hydroxy-2-naphthoic acid (3HNA) can attenuate angiotensin II (AngII)-induced vascular remodeling and hypertension. Methods and Results Mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension with or without 3HNA treatment. We found that injections of 3HNA prevented hypertension and increase in heart weight body weight ratio induced by AngII infusion. Histological assessment revealed that 3HNA treatment prevented vascular medial thickening as well as perivascular fibrosis in response to AngII infusion. In cultured vascular smooth muscle cells, 3HNA attenuated enhancement in protein synthesis induced by AngII. In vascular adventitial fibroblasts, 3HNA prevented induction of unfolded protein response markers. Conclusions We present evidence that a chemical chaperone 3HNA prevents vascular remodeling and hypertension in mice with AngII infusion, and 3HNA further prevents increase in protein synthesis in AngII-stimulated vascular smooth muscle cells. Using 3HNA may represent a novel therapy for hypertension with multiple benefits by preserving protein homeostasis under cardiovascular stress.


Asunto(s)
Angiotensina II , Hipertensión , Animales , Ratones , Remodelación Vascular , Hidroxiácidos , Retículo Endoplásmico , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico
13.
Sci Total Environ ; 761: 143270, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33160657

RESUMEN

In the past century, the evergreen woody shrub, Rhododendron maximum, has experienced habitat expansion following foundational tree species die-off in eastern US deciduous forests. Rhododendron can potentially alter stream chemistry, temperature, trophic dynamics, and in-stream decomposition rates, given its dominance in riparian areas. Here we conducted two operational-scale (3 ha) riparian treatments that removed rhododendron through cutting alone (CR, canopy removal), or removing both the rhododendron canopy and forest floor using cutting and prescribed fire (CFFR, canopy and forest floor removal). We expected that rhododendron shrub removal, with or without soil organic horizon removal, would increase soil nutrient availability and subsequently alter stream pH, acid neutralizing capacity (ANC), inorganic nitrogen (NO3-N, NH4-N), total dissolved inorganic nitrogen, dissolved organic carbon (DOC), calcium (Ca), potassium (K), and magnesium (Mg). We hypothesized that responses would occur more quickly in the CFFR treatment. Treatments reduced shrub-, but not tree basal area. Treatments lowered soil N, but not C. Stream chemistry responses to treatments varied between CR and CFFR and were transient, generally with pH, N, and some cations declining, and aluminum (Al) and DOC showing a pulse increase. By removing rhododendron, the remaining deciduous trees likely accelerated N uptake as soil moisture availability increased. This could partially explain why we observed lower than expected stream nutrients (NO3-N, Ca, and Mg) after treatments. Initial rhododendron slash on the forest floor coupled with incomplete consumption of the O-horizon on the CFFR treatment likely elevated DOC in the upper soil horizons and mobilized Al. From a management perspective, using these treatments to restore structure and function to riparian forests in the wake of eastern hemlock mortality, with or without fire, would most likely not result in short-term diminished water quality that is common when overstory trees are harvested and may even lower stream NO3-N concentrations long term.


Asunto(s)
Rhododendron , Tsuga , Animales , Región de los Apalaches , Ecosistema , Bosques , Ríos , Árboles , Calidad del Agua
14.
JACC Basic Transl Sci ; 5(1): 69-83, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32043021

RESUMEN

Activated factor X is a key component of the coagulation cascade, but whether it directly regulates pathological cardiac remodeling is unclear. In mice subjected to pressure overload stress, cardiac factor X mRNA expression and activity increased concurrently with cardiac hypertrophy, fibrosis, inflammation and diastolic dysfunction, and responses blocked with a low coagulation-independent dose of rivaroxaban. In vitro, neurohormone stressors increased activated factor X expression in both cardiac myocytes and fibroblasts, resulting in activated factor X-mediated activation of protease-activated receptors and pro-hypertrophic and -fibrotic responses, respectively. Thus, inhibition of cardiac-expressed activated factor X could provide an effective therapy for the prevention of adverse cardiac remodeling in hypertensive patients.

15.
Hypertension ; 76(1): 267-276, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32389075

RESUMEN

Endothelial inflammation and mitochondrial dysfunction have been implicated in cardiovascular diseases, yet, a unifying mechanism tying them together remains limited. Mitochondrial dysfunction is frequently associated with mitochondrial fission/fragmentation mediated by the GTPase Drp1 (dynamin-related protein 1). Nuclear factor (NF)-κB, a master regulator of inflammation, is implicated in endothelial dysfunction and resultant complications. Here, we explore a causal relationship between mitochondrial fission and NF-κB activation in endothelial inflammatory responses. In cultured endothelial cells, TNF-α (tumor necrosis factor-α) or lipopolysaccharide induces mitochondrial fragmentation. Inhibition of Drp1 activity or expression suppresses mitochondrial fission, NF-κB activation, vascular cell adhesion molecule-1 induction, and leukocyte adhesion induced by these proinflammatory factors. Moreover, attenuations of inflammatory leukocyte adhesion were observed in Drp1 heterodeficient mice as well as endothelial Drp1 silenced mice. Intriguingly, inhibition of the canonical NF-κB signaling suppresses endothelial mitochondrial fission. Mechanistically, NF-κB p65/RelA seems to mediate inflammatory mitochondrial fission in endothelial cells. In addition, the classical anti-inflammatory drug, salicylate, seems to maintain mitochondrial fission/fusion balance against TNF-α via inhibition of NF-κB. In conclusion, our results suggest a previously unknown mechanism whereby the canonical NF-κB cascade and a mitochondrial fission pathway interdependently regulate endothelial inflammation.


Asunto(s)
Dinaminas/fisiología , Células Endoteliales/fisiología , Endotelio Vascular/patología , Dinámicas Mitocondriales/fisiología , FN-kappa B/metabolismo , Vasculitis/fisiopatología , Células 3T3 , Animales , Aorta/citología , Adhesión Celular , Células Cultivadas , Dinaminas/antagonistas & inhibidores , Dinaminas/genética , Células Endoteliales/efectos de los fármacos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Proteínas Mitocondriales/fisiología , Mutación Missense , Fosforilación , Fosfoserina/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Ratas , Salicilato de Sodio/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Molécula 1 de Adhesión Celular Vascular/biosíntesis , Molécula 1 de Adhesión Celular Vascular/genética
16.
J Environ Qual ; 37(4): 1419-31, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18574173

RESUMEN

We predicted the effects of sulfate (SO(4)) deposition on wilderness areas designated as Class I air quality areas in western North Carolina using a nutrient cycling model (NuCM). We used three S deposition simulations: current, 50% decrease, and 100% increase. We measured vegetation, forest floor, and root biomass and collected soil, soil solution, and stream water samples for chemical analyses. We used the closest climate stations and atmospheric deposition stations to parameterize NuCM. The areas were: Joyce Kilmer (JK), Shining Rock (SR), and Linville Gorge (LG). They differ in soil acidity and nutrients, and soil solution and stream chemistry. Shining Rock and LG have lower soil solution base cation and higher acidic ion concentrations than JK. For SR and LG, the soil solution Ca/Al molar ratios are currently 0.3 in the rooting zone (A horizon), indicating Al toxicity. At SR, the simulated Ca/Al ratio increased to slightly above 1.5 after the 30-yr simulation regardless of S deposition reduction. At LG, Ca/Al ratios ranged from 1.6 to 2.4 toward the end of the simulation period, the 100% increase scenario had the lower value. Low Ca/Al ratios suggest that forests at SR and LG are significantly stressed under current conditions. Our results also suggest that SO(4) retention is low, perhaps contributing to their high degree of acidification. Their soils are acidic, low in weatherable minerals, and even with large reductions in SO(4) and associated acid deposition, it may take decades before these systems recover from depletion of exchangeable Ca, Mg, and K.


Asunto(s)
Suelo , Azufre/análisis , Biomasa , Calibración , Recolección de Datos , Modelos Teóricos , North Carolina
17.
Methods Mol Biol ; 1527: 201-211, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28116718

RESUMEN

Studying signal transduction in hypertension model systems in vitro will include several steps: (1) develop the cell culture model and induce hypertensive changes, (2) observe kinase activation, (3) manipulate signal transduction pathways, and (4) observe physiologic outputs. This chapter will provide the reader with overviews of the techniques our lab uses to inhibit signaling pathways with inhibitory RNAs and the outputs we use to monitor the effects.


Asunto(s)
Hipertensión/metabolismo , Adenoviridae/genética , Animales , Aorta/metabolismo , Western Blotting , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Receptores ErbB/genética , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipertensión/genética , Masculino , MicroARNs/genética , Fosforilación/genética , Fosforilación/fisiología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Transducción de Señal/fisiología
18.
Methods Mol Biol ; 1614: 147-153, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28500601

RESUMEN

This chapter provides information on how to culture primary rat vascular smooth muscle cells and how to induce cellular changes similar to those associated with angiotensin II activation in vivo. We describe how to assess the cellular changes by determining cell size with an automated coulter cell counter to measure cell volume. In addition, we describe a method to assess total protein content. Finally, we describe a standard technique to quantify angiotensin II-induced pro-fibrotic response using the Chondrex Sirius Red Total Collagen Detection Kit.


Asunto(s)
Fibrosis/diagnóstico , Hipertrofia/diagnóstico , Miocitos del Músculo Liso/metabolismo , Proteínas/análisis , Animales , Técnicas de Cultivo de Célula , Tamaño de la Célula , Células Cultivadas , Fibrosis/metabolismo , Hipertrofia/metabolismo , Técnicas In Vitro , Masculino , Proteínas/metabolismo , Ratas , Ratas Sprague-Dawley
19.
Hypertension ; 69(1): 79-86, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27895190

RESUMEN

It has been proposed that membrane microdomains, caveolae, in vascular cells are critical for signal transduction and downstream functions induced by angiotensin II (AngII). We have tested our hypothesis that caveolin-1 (Cav1), a major structural protein of vascular caveolae, plays a critical role in the development of vascular remodeling by AngII via regulation of epidermal growth factor receptor and vascular endothelial adhesion molecule-1. Cav1-/- and control Cav+/+ mice were infused with AngII for 2 weeks to induce vascular remodeling and hypertension. On AngII infusion, histological assessments demonstrated medial hypertrophy and perivascular fibrosis of aorta and coronary and renal arteries in Cav1+/+ mice compared with sham-operated Cav1+/+ mice. AngII-infused Cav1+/+ mice also showed a phenotype of cardiac hypertrophy with increased heart weight to body weight ratio compared with control Cav1+/+ mice. In contrast, Cav1-/- mice infused with AngII showed attenuation of vascular remodeling but not cardiac hypertrophy. Similar levels of AngII-induced hypertension were found in both Cav1+/+ and Cav1-/- mice as assessed by telemetry. In Cav1+/+ mice, AngII enhanced tyrosine-phosphorylated epidermal growth factor receptor staining in the aorta, which was attenuated in Cav1-/- mice infused with AngII. Enhanced Cav1 and vascular endothelial adhesion molecule-1 expression was also observed in aorta from AngII-infused Cav1+/+ mice but not in Cav1-/- aorta. Experiments with vascular cells further provided a potential mechanism for our in vivo findings. These data suggest that Cav1, and presumably caveolae, in vascular smooth muscle and the endothelium plays a critical role in vascular remodeling and inflammation independent of blood pressure or cardiac hypertrophy regulation.


Asunto(s)
Angiotensina II/farmacología , Caveolina 1/genética , Eliminación de Gen , Hipertensión/genética , Remodelación Vascular/genética , Animales , Presión Sanguínea/fisiología , Caveolina 1/metabolismo , Modelos Animales de Enfermedad , Hipertensión/metabolismo , Hipertensión/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Remodelación Vascular/efectos de los fármacos
20.
Hypertension ; 68(4): 949-955, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27480833

RESUMEN

Angiotensin II (AngII) has been strongly implicated in hypertension and its complications. Evidence suggests the mechanisms by which AngII elevates blood pressure and enhances cardiovascular remodeling and damage may be distinct. However, the signal transduction cascade by which AngII specifically initiates cardiovascular remodeling, such as hypertrophy and fibrosis, remains insufficiently understood. In vascular smooth muscle cells, a metalloproteinase ADAM17 mediates epidermal growth factor receptor transactivation, which may be responsible for cardiovascular remodeling but not hypertension induced by AngII. Thus, the objective of this study was to test the hypothesis that activation of vascular ADAM17 is indispensable for vascular remodeling but not for hypertension induced by AngII. Vascular ADAM17-deficient mice and control mice were infused with AngII for 2 weeks. Control mice infused with AngII showed cardiac hypertrophy, vascular medial hypertrophy, and perivascular fibrosis. These phenotypes were prevented in vascular ADAM17-deficient mice independent of blood pressure alteration. AngII infusion enhanced ADAM17 expression, epidermal growth factor receptor activation, and endoplasmic reticulum stress in the vasculature, which were diminished in ADAM17-deficient mice. Treatment with a human cross-reactive ADAM17 inhibitory antibody also prevented cardiovascular remodeling and endoplasmic reticulum stress but not hypertension in C57Bl/6 mice infused with AngII. In vitro data further supported these findings. In conclusion, vascular ADAM17 mediates AngII-induced cardiovascular remodeling via epidermal growth factor receptor activation independent of blood pressure regulation. ADAM17 seems to be a unique therapeutic target for the prevention of hypertensive complications.


Asunto(s)
Proteína ADAM17/efectos de los fármacos , Proteína ADAM17/metabolismo , Angiotensina II/farmacología , Cardiomegalia/metabolismo , Receptores ErbB/metabolismo , Hipertensión/complicaciones , Animales , Cardiomegalia/prevención & control , Células Cultivadas , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Miocitos Cardíacos/metabolismo , Distribución Aleatoria , Sistema Renina-Angiotensina/fisiología , Sensibilidad y Especificidad , Transducción de Señal/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Remodelación Vascular/fisiología , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA