Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 416(3): 773-785, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37723254

RESUMEN

The National Institute of Standards and Technology (NIST) has prepared four seafood reference materials (RMs) for use in food safety and nutrition studies: wild-caught and aquacultured salmon (RM 8256 and RM 8257) and wild-caught and aquacultured shrimp (RM 8258 and RM 8259). These materials were characterized using genetic, metabolomic (1H-NMR, nuclear magnetic resonance and LC-HRMS/MS, liquid chromatography high-resolution tandem mass spectrometry), lipidomic, and proteomic methods to explore their use as matrix-matched, multi-omic differential materials for method development towards identifying product source and/or as quality control in untargeted omics studies. The results from experimental replicates were reproducible for each reference material and analytical method, with the most abundant features reported. Additionally, differences between the materials could be detected, where wild-caught and aquacultured seafood could be distinguished using untargeted metabolite, lipid, and protein analyses. Further processing of the fresh-frozen RMs by freeze-drying revealed the freeze-dried seafoods could still be reliably discerned. These results demonstrate the usefulness of these reference materials as tools for omics instrument validation and measurement harmonization in seafood-related studies. Furthermore, their use as differential quality control (QC) materials, regardless of preparation method, may also provide a tool for laboratories to demonstrate proficiency at discriminating between products based on source/species.


Asunto(s)
Multiómica , Proteómica , Estándares de Referencia , Control de Calidad , Alimentos Marinos/análisis
2.
Anal Bioanal Chem ; 412(22): 5447-5451, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32556363

RESUMEN

Biological reference materials (RMs) are essential for quality assurance, traceability of measurement results and for method validation. When addressing new measurement questions or emerging regulatory issues, rigorous large-scale CRM production may not be time efficient or economically practical using current production methods. By amending a relatively small matrix batch with a compound(s) of interest at the homogenization step, the National Institute of Standards and Technology (NIST) can create a custom material on an "as-needed" basis and circumvent the time delay inherent in large-batch production, thereby generating a fit-for-purpose, rapid-response RM. Here, Coho salmon (Oncorhynchus kisutch) was cryohomogenized and spiked with an aquaculture antibiotic and antibiotic metabolite. The resultant material was analyzed using liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) to determine the effectiveness of the amendment technique in a fresh-frozen matrix by assessing homogeneity and accuracy to the target concentration (e.g. mass fraction). Target mass fractions were achieved for both spike components, with RSDs below 5% in replicate measurements of each compound (n = 8). The stability of the spiked compounds was assessed one year post-production and mass fractions were stable, within 1-6% of the initial measurement results, indicating minimal change to the amended analyte concentrations over time. The results support this method as a promising new technique for custom, small-batch RM generation.


Asunto(s)
Frío , Estándares de Referencia , Animales , Cromatografía Liquida/métodos , Oncorhynchus kisutch , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
3.
Genes (Basel) ; 14(9)2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37761836

RESUMEN

The last decade has witnessed dramatic improvements in whole-genome sequencing capabilities coupled to drastically decreased costs, leading to an inundation of high-quality de novo genomes. For this reason, the continued development of genome quality metrics is imperative. Using the 2016 Atlantic bottlenose dolphin NCBI RefSeq annotation and mass spectrometry-based proteomic analysis of six tissues, we confirmed 10,402 proteins from 4711 protein groups, constituting nearly one-third of the possible predicted proteins. Since the identification of larger proteins with more identified peptides implies reduced database fragmentation and improved gene annotation accuracy, we propose the metric NP10, which attempts to capture this quality improvement. The NP10 metric is calculated by first stratifying proteomic results by identifying the top decile (or 10th 10-quantile) of identified proteins based on the number of peptides per protein and then returns the median molecular weight of the resulting proteins. When using the 2016 versus 2012 Tursiops truncatus genome annotation to search this proteomic data set, there was a 21% improvement in NP10. This metric was further demonstrated by using a publicly available proteomic data set to compare human genome annotations from 2004, 2013 and 2016, which showed a 33% improvement in NP10. These results demonstrate that proteomics may be a useful metrological tool to benchmark genome accuracy, though there is a need for reference proteomic datasets across species to facilitate the evaluation of new de novo and existing genome.


Asunto(s)
Delfín Mular , Proteómica , Animales , Humanos , Delfín Mular/genética , Proteínas , Genoma Humano , Espectrometría de Masas
4.
Sci Data ; 6(1): 324, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852895

RESUMEN

The National Institute of Standards and Technology (NIST) is creating new, economical, qualitative reference materials and data for proteomics comparisons, benchmarking and harmonization. Here we describe a large dataset from shotgun proteomic analysis of RM 8461 Human Liver for Proteomics, a reference material being developed. Consensus identifications using multiple search engines and sample preparations demonstrate a homogeneous and fit-for-purpose material that can be incorporated into automated or manual sample preparation workflows, with the resulting data used to directly assess complete sample-to-data workflows and provide harmonization and benchmarking between laboratories and techniques. Data are available via PRIDE with identifier PXD013608.


Asunto(s)
Bases de Datos de Proteínas , Hígado/metabolismo , Proteómica , Procesamiento Automatizado de Datos , Humanos , Estándares de Referencia , Motor de Búsqueda , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA