Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cytotherapy ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38583169

RESUMEN

BACKGROUND AIMS: Substrate elasticity may direct cell-fate decisions of stem cells. However, it is largely unclear how matrix stiffness affects the differentiation of induced pluripotent stem cells (iPSCs) and whether this is also reflected by epigenetic modifications. METHODS: We cultured iPSCs on tissue culture plastic (TCP) and polydimethylsiloxane (PDMS) with different Young's modulus (0.2 kPa, 16 kPa or 64 kPa) to investigate the sequel on growth and differentiation toward endoderm, mesoderm and ectoderm. RESULTS: Immunofluorescence and gene expression of canonical differentiation markers were hardly affected by the substrates. Notably, when we analyzed DNA methylation profiles of undifferentiated iPSCs or after three-lineage differentiation, we did not see any significant differences on the three different PDMS elasticities. Only when we compared DNA methylation profiles on PDMS-substrates versus TCP we did observe epigenetic differences, particularly on mesodermal differentiation. CONCLUSIONS: Stiffness of PDMS substrates did not affect directed differentiation of iPSCs, whereas the moderate epigenetic differences on TCP might also be attributed to other chemical parameters.

2.
Stem Cell Reports ; 18(1): 145-158, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36460001

RESUMEN

Quality control of induced pluripotent stem cells remains a challenge. For validation of the pluripotent state, it is crucial to determine trilineage differentiation potential toward endoderm, mesoderm, and ectoderm. Here, we report GermLayerTracker, a combination of site-specific DNA methylation (DNAm) assays that serve as biomarker for early germ layer specification. CG dinucleotides (CpGs) were identified with characteristic DNAm at pluripotent state and after differentiation into endoderm, mesoderm, and ectoderm. Based on this, a pluripotency score was derived that tracks reprogramming and may indicate differentiation capacity, as well as lineage-specific scores to monitor either directed differentiation or self-organized multilineage differentiation in embryoid bodies. Furthermore, we established pyrosequencing assays for fast and cost-effective analysis. In the future, the GermLayerTracker could be used for quality control of pluripotent cells and to estimate lineage-specific commitment during initial differentiation events.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Células Cultivadas , Diferenciación Celular/genética , Epigénesis Genética , Biomarcadores
3.
Biomater Adv ; 146: 213308, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36774716

RESUMEN

Induced pluripotent stem cells (iPSCs) form aggregates that recapitulate aspects of the self-organization in early embryogenesis. Within few days, cells undergo a transition from epithelial-like structures to organized three-dimensional embryoid bodies (EBs) with upregulation of germ layer-specific genes. However, it is largely unclear, which signaling cascades regulate self-organized differentiation. The Yes-associated protein 1 (YAP1) is a downstream effector of the Hippo pathway and essential mechanotransducer. YAP1 has been suggested to play a crucial role for early embryo development, but the relevance for early germ layer commitment of human iPSCs remains to be elucidated. To gain insights into the function of YAP1 in early cell-fate decisions, we generated YAP1 knockout (YAP-/-) iPSC lines with CRISPR/Cas9 technology and analyzed transcriptomic and epigenetic modifications. YAP-/- iPSCs showed increased expression of several YAP1 targets and of NODAL, an important regulator of cell differentiation. Furthermore, YAP1 deficiency evoked global DNA methylation changes. Directed differentiation of adherent iPSC colonies towards endoderm, mesoderm, and ectoderm could be induced, albeit endodermal and ectodermal differentiation showed transcriptomic and epigenetic changes in YAP-/- lines. Notably, in undirected self-organized YAP-/- EBs germ layer specification was clearly impaired. This phenotype was rescued via lentiviral overexpression of YAP1 and also by NODAL inhibitors. Our results demonstrate that YAP1 plays an important role during early germ layer specification of iPSCs, particularly for the undirected self-organization of EBs, and this is at least partly attributed to activation of the NODAL signaling.


Asunto(s)
Estratos Germinativos , Células Madre Pluripotentes , Humanos , Diferenciación Celular/genética , Estratos Germinativos/metabolismo , Endodermo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
4.
Front Cell Dev Biol ; 11: 1302448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099298

RESUMEN

Pluripotent stem cells are characterized by their differentiation potential toward endoderm, mesoderm, and ectoderm. However, it is still largely unclear how these cell-fate decisions are mediated by epigenetic mechanisms. In this study, we explored the relevance of CCCTC-binding factor (CTCF), a zinc finger-containing DNA-binding protein, which mediates long-range chromatin organization, for directed cell-fate determination. We generated human induced pluripotent stem cell (iPSC) lines with deletions in the protein-coding region in exon 3 of CTCF, resulting in shorter transcripts and overall reduced protein expression. Chromatin immunoprecipitation showed a considerable loss of CTCF binding to target sites. The CTCF deletions resulted in slower growth and modest global changes in gene expression, with downregulation of a subset of pluripotency-associated genes and neuroectodermal genes. CTCF deletion also evoked DNA methylation changes, which were moderately associated with differential gene expression. Notably, CTCF-deletions lead to upregulation of endo-mesodermal associated marker genes and epigenetic signatures, whereas ectodermal differentiation was defective. These results indicate that CTCF plays an important role in the maintenance of pluripotency and differentiation, especially towards ectodermal lineages.

5.
Front Bioeng Biotechnol ; 10: 755983, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35662848

RESUMEN

Induced pluripotent stem cells (iPS cells) represent a particularly versatile stem cell type for a large array of applications in biology and medicine. Taking full advantage of iPS cell technology requires high throughput and automated iPS cell culture and differentiation. We present an automated platform for efficient and robust iPS cell culture and differentiation into blood cells. We implemented cell cluster sorting for analysis and sorting of iPS cell clusters in order to establish clonal iPS cell lines with high reproducibility and efficacy. Patient-specific iPS cells were induced to differentiate towards hematopoietic cells via embryoid body (EB) formation. EB size impacts on iPS cell differentiation and we applied cell cluster sorting to obtain EB of defined size for efficient blood cell differentiation. In summary, implementing cell cluster sorting into the workflow of iPS cell cloning, growth and differentiation represent a valuable add-on for standard and automated iPS cell handling.

6.
Biomaterials ; 282: 121389, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35121357

RESUMEN

Colonies of induced pluripotent stem cells (iPSCs) reveal aspects of self-organization even under culture conditions that maintain pluripotency. To investigate the dynamics of this process under spatial confinement, we used either polydimethylsiloxane (PDMS) pillars or micro-contact printing of vitronectin. There was a progressive upregulation of OCT4, E-cadherin, and NANOG within 70 µm from the outer rim of iPSC colonies. Single-cell RNA-sequencing and spatial reconstruction of gene expression demonstrated that OCT4high subsets, residing at the edge of the colony, have pronounced up-regulation of the TGF-ß pathway, particularly of NODAL and its inhibitor LEFTY. Interestingly, after 5-7 days, iPSC colonies detached spontaneously from micro-contact printed substrates to form 3D aggregates. This new method allowed generation of embryoid bodies (EBs) of controlled size without enzymatic or mechanical treatment. Within the early 3D aggregates, radial organization and differential gene expression continued in analogy to the changes observed during self-organization of iPSC colonies. Early self-detached aggregates revealed up-regulated germline-specific gene expression patterns as compared to conventional EBs. However, there were no marked differences after further directed differentiation toward hematopoietic, mesenchymal, and neuronal lineages. Our results provide further insight into the gradual self-organization within iPSC colonies and at their transition into EBs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular/fisiología , Cuerpos Embrioides/metabolismo , Regulación hacia Arriba
7.
Cells ; 9(10)2020 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050550

RESUMEN

Embryoid bodies (EBs) resemble self-organizing aggregates of pluripotent stem cells that recapitulate some aspects of early embryogenesis. Within few days, the cells undergo a transition from rather homogeneous epithelial-like pluripotent stem cell colonies into a three-dimensional organization of various cell types with multifaceted cell-cell interactions and lumen formation-a process associated with repetitive epithelial-mesenchymal transitions. In the last few years, culture methods have further evolved to better control EB size, growth, cellular composition, and organization-e.g., by the addition of morphogens or different extracellular matrix molecules. There is a growing perception that the mechanical properties, cell mechanics, and cell signaling during EB development are also influenced by physical cues to better guide lineage specification; substrate elasticity and topography are relevant, as well as shear stress and mechanical strain. Epithelial structures outside and inside EBs support the integrity of the cell aggregates and counteract mechanical stress. Furthermore, hydrogels can be used to better control the organization and lineage-specific differentiation of EBs. In this review, we summarize how EB formation is accompanied by a variety of biomechanical parameters that need to be considered for the directed and reproducible self-organization of early cell fate decisions.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Fenómenos Biomecánicos/fisiología , Diferenciación Celular , Células Cultivadas , Desarrollo Embrionario , Humanos , Células Madre Pluripotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA