Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cosmet Sci ; 71(5): 321-350, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33022200

RESUMEN

Aging is a natural phenomenon that affects the whole body, including the skin. As we age, endogenous and exogenous factors cause our skin to become thinner, paler, and wrinkled. Although the underlying mechanisms of the pathogenesis of skin aging are not entirely known, multiple pathways have been proposed. Inflammaging has recently emerged as a pathway that correlates aging and age-related diseases with inflammation. This review discusses the role and pathways of inflammaging that lead to skin aging. Moreover, strategies and current topical approaches for skin-aging treatment are discussed. Studies over the past 10 years suggested that DNA damage and oxidative stress are the most critical mechanisms in skin aging, and both are interlinked with inflammaging. Several treatments for skin aging have been considered such as antioxidants, hormone replacement therapy, and vitamins. To deliver anti-aging agents topically, researchers adopted numerous approaches to enhance skin penetration including physical, chemical, or biomaterial enhancers and carrier-based formulations. In recent years, consumers' demands for anti-aging products have considerably risen, leading to robust growth in the anti-aging market. Therefore, further in-depth studies are necessary to understand skin-aging mechanisms and evaluate the efficacy of anti-aging products to protect consumers worldwide by providing them safe and effective over-the-counter skin-aging formulations.


Asunto(s)
Envejecimiento de la Piel , Antioxidantes/farmacología , Humanos , Inflamación , Piel
2.
AMB Express ; 14(1): 52, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704474

RESUMEN

Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.

3.
Antibiotics (Basel) ; 11(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35052889

RESUMEN

The continuous emergence of multidrug-resistant (MDR) pathogens poses a global threat to public health. Accordingly, global efforts are continuously conducted to find new approaches to infection control by rapidly discovering antibiotics, particularly those that retain activities against MDR pathogens. In this study, metagenomic nanopore sequence analysis coupled with spectroscopic methods has been conducted for rapid exploring of the various active metabolites produced by Paenibacillus ehimensis soil isolate. Preliminary soil screening resulted in selection of a Gram-positive isolate identified via 16S ribosomal RNA gene sequencing as Paenibacillus ehimensis MZ921932. The isolate showed a broad range of activity against MDR Gram-positive, Gram-negative, and Candida spp. A metagenomics sequence analysis of the soil sample harboring Paenibacillus ehimensis isolate MZ921932 (NCBI GenBank accession PRJNA785410) revealed the presence of conserved biosynthetic gene clusters of petrobactin, tridecaptin, locillomycin (ß-lactone), polymyxin, and macrobrevin (polyketides). The liquid chromatography/mass (LC/MS) analysis of the Paenibacillus ehimensis metabolites confirmed the presence of petrobactin, locillomycin, and macrobrevin. In conclusion, Paenibacillus ehimensis isolate MZ921932 is a promising rich source for broad spectrum antimicrobial metabolites. The metagenomic nanopore sequence analysis was a rapid, easy, and efficient method for the preliminary detection of the nature of the expected active metabolites. LC/MS spectral analysis was employed for further confirmation of the nature of the respective active metabolites.

4.
Antibiotics (Basel) ; 10(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34827320

RESUMEN

The continuous development of multidrug resistance pathogens with limited therapeutic options has become a great problem globally that impose sever health hazards. Accordingly, searching for of new antimicrobials became an urgent demand and great challenge. Soil significantly have been associated with several species that are antibiotic producers. In this study, combination of conventional screening methods with Liquid chromatography- Mass spectroscopy (LC/MS) and metagenomic nanopore sequence analysis have been conducted for the deciphering the active metabolites produced by soil isolate(s). Preliminary soil screening resulted in a Gram-negative isolate identified via 16S ribosomal RNA as Alcaligenes faecalis isolate MZ921504 with promising antimicrobial activities against wide range of MDR gram-positive and gram-negative pathogens. The LC/MS analysis of the metabolites of A. faecalis isolate MZ921504 confirmed the presence of ectoine, bacillibactin, quinolobactin and burkholderic acid. Metagenomics sequence analysis of the soil sample (NCBI GenBank accession PRJNA771993) revealed the presence of conserved biosynthetic gene clusters of ectoine, bacteriocin, bacillibactin, quinolobactin, terpene and burkholderic acid of A. faecalis. In conclusion, A. faecalis isolate MZ921504 is a promising source for antimicrobial metabolites. LC/MS spectral analysis and third generation sequencing tools followed by secondary metabolite gene clusters analysis are useful methods to predict the nature of the antimicrobial metabolites.

5.
Recent Pat Drug Deliv Formul ; 13(2): 105-156, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31577201

RESUMEN

Traditional nutraceuticals and cosmeceuticals hold pragmatic nature with respect to their definitions, claims, purposes and marketing strategies. Their definitions are not well established worldwide. They also have different regulatory definitions and registration regulatory processes in different parts of the world. Global prevalence of nutraceuticals and cosmeceuticals is noticeably high with large market share with minimal regulation compared to traditional drugs. The global market is flooded with nutraceuticals and cosmeceuticals claiming to be of natural origin and sold with a therapeutic claim by major online retail stores such as Amazon and eBay. Apart from the traditional formulations, many manufacturers and researchers use novel formulation technologies in nutraceutical and cosmeceutical formulations for different reasons and objectives. Manufacturers tend to differentiate their products with novel formulations to increase market appeal and sales. On the other hand, researchers use novel strategies to enhance nutraceuticals and cosmeceuticals activity and safety. The objective of this review is to assess the current patents and research adopting novel formulation strategies in nutraceuticals and cosmeceuticals. Patents and research papers investigating nutraceutical and cosmeceutical novel formulations were surveyed for the past 15 years. Various nanosystems and advanced biotechnology systems have been introduced to improve the therapeutic efficacy, safety and market appeal of nutraceuticals and cosmeceuticals, including liposomes, polymeric micelles, quantum dots, nanoparticles, and dendrimers. This review provides an overview of nutraceuticals and cosmeceuticals current technologies, highlighting their pros, cons, misconceptions, regulatory definitions and market. This review also aims in separating the science from fiction in the nutraceuticals and cosmeceuticals development, research and marketing.


Asunto(s)
Cosmecéuticos/administración & dosificación , Suplementos Dietéticos , Biotecnología/métodos , Seguridad de Productos para el Consumidor , Cosmecéuticos/legislación & jurisprudencia , Cosmecéuticos/normas , Suplementos Dietéticos/normas , Humanos , Legislación Alimentaria , Patentes como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA