Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Nature ; 618(7967): 992-999, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316666

RESUMEN

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Asunto(s)
Archaea , Eucariontes , Filogenia , Archaea/clasificación , Archaea/citología , Archaea/genética , Eucariontes/clasificación , Eucariontes/citología , Eucariontes/genética , Células Eucariotas/clasificación , Células Eucariotas/citología , Células Procariotas/clasificación , Células Procariotas/citología , Conjuntos de Datos como Asunto , Duplicación de Gen , Evolución Molecular
2.
PLoS Genet ; 19(12): e1011050, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38060519

RESUMEN

The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.


Asunto(s)
Eucariontes , Oxymonadida , Filogenia , Eucariontes/genética , Oxymonadida/genética , Oxymonadida/metabolismo , Mitocondrias/genética , Genómica
3.
PLoS Biol ; 19(3): e3001081, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705380

RESUMEN

The apical complex is the instrument of invasion used by apicomplexan parasites, and the conoid is a conspicuous feature of this apparatus found throughout this phylum. The conoid, however, is believed to be heavily reduced or missing from Plasmodium species and other members of the class Aconoidasida. Relatively few conoid proteins have previously been identified, making it difficult to address how conserved this feature is throughout the phylum, and whether it is genuinely missing from some major groups. Moreover, parasites such as Plasmodium species cycle through 3 invasive forms, and there is the possibility of differential presence of the conoid between these stages. We have applied spatial proteomics and high-resolution microscopy to develop a more complete molecular inventory and understanding of the organisation of conoid-associated proteins in the model apicomplexan Toxoplasma gondii. These data revealed molecular conservation of all conoid substructures throughout Apicomplexa, including Plasmodium, and even in allied Myzozoa such as Chromera and dinoflagellates. We reporter-tagged and observed the expression and location of several conoid complex proteins in the malaria model P. berghei and revealed equivalent structures in all of its zoite forms, as well as evidence of molecular differentiation between blood-stage merozoites and the ookinetes and sporozoites of the mosquito vector. Collectively, we show that the conoid is a conserved apicomplexan element at the heart of the invasion mechanisms of these highly successful and often devastating parasites.


Asunto(s)
Apicomplexa/metabolismo , Plasmodium/metabolismo , Evolución Biológica , Citoesqueleto/metabolismo , Evolución Molecular , Malaria/parasitología , Mosquitos Vectores/metabolismo , Plasmodium/patogenicidad , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidad
4.
PLoS Biol ; 19(8): e3001365, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34358228

RESUMEN

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.


Asunto(s)
Eucariontes/genética , Filogenia , Programas Informáticos
5.
Nature ; 564(7736): 410-414, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429611

RESUMEN

Almost all eukaryote life forms have now been placed within one of five to eight supra-kingdom-level groups using molecular phylogenetics1-4. The 'phylum' Hemimastigophora is probably the most distinctive morphologically defined lineage that still awaits such a phylogenetic assignment. First observed in the nineteenth century, hemimastigotes are free-living predatory protists with two rows of flagella and a unique cell architecture5-7; to our knowledge, no molecular sequence data or cultures are currently available for this group. Here we report phylogenomic analyses based on high-coverage, cultivation-independent transcriptomics that place Hemimastigophora outside of all established eukaryote supergroups. They instead comprise an independent supra-kingdom-level lineage that most likely forms a sister clade to the 'Diaphoretickes' half of eukaryote diversity (that is, the 'stramenopiles, alveolates and Rhizaria' supergroup (Sar), Archaeplastida and Cryptista, as well as other major groups). The previous ranking of Hemimastigophora as a phylum understates the evolutionary distinctiveness of this group, which has considerable importance for investigations into the deep-level evolutionary history of eukaryotic life-ranging from understanding the origins of fundamental cell systems to placing the root of the tree. We have also established the first culture of a hemimastigote (Hemimastix kukwesjijk sp. nov.), which will facilitate future genomic and cell-biological investigations into eukaryote evolution and the last eukaryotic common ancestor.


Asunto(s)
Eucariontes/clasificación , Eucariontes/genética , Filogenia , Técnicas de Cultivo de Célula/métodos , Tamaño de la Célula , ADN Ribosómico/genética , Eucariontes/citología , Flagelos , Genes de ARNr/genética , Análisis de la Célula Individual , Transcriptoma/genética
6.
J Eukaryot Microbiol ; 70(6): e12997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37606230

RESUMEN

Ancyromonads are small biflagellated protists with a bean-shaped morphology. They are cosmopolitan in marine, freshwater, and soil environments, where they attach to surfaces while feeding on bacteria. These poorly known grazers stand out by their uncertain phylogenetic position in the tree of eukaryotes, forming a deep-branching "orphan" lineage that is considered key to a better understanding of the early evolution of eukaryotes. Despite their ecological and evolutionary interest, only limited knowledge exists about their true diversity. Here, we aimed to characterize ancyromonads better by integrating environmental surveys with behavioral observation and description of cell morphology, for which sample isolation and culturing are indispensable. We studied 18 ancyromonad strains, including 14 new isolates and seven new species. We described three new and genetically divergent genera: Caraotamonas, Nyramonas, and Olneymonas, together encompassing four species. The remaining three new species belong to the already-known genera Fabomonas and Ancyromonas. We also raised Striomonas, formerly a subgenus of Nutomonas, to full genus status, on morphological and phylogenetic grounds. We studied the morphology of diverse ancyromonads under light and electron microscopy and carried out molecular phylogenetic analyses, also including 18S rRNA gene sequences from several environmental surveys. Based on these analyses, we have updated the taxonomy of Ancyromonadida.


Asunto(s)
Eucariontes , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 18S/genética , Microscopía Electrónica
7.
Mol Biol Evol ; 38(6): 2240-2259, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33528570

RESUMEN

The transition of free-living organisms to parasitic organisms is a mysterious process that occurs in all major eukaryotic lineages. Parasites display seemingly unique features associated with their pathogenicity; however, it is important to distinguish ancestral preconditions to parasitism from truly new parasite-specific functions. Here, we sequenced the genome and transcriptome of anaerobic free-living Mastigamoeba balamuthi and performed phylogenomic analysis of four related members of the Archamoebae, including Entamoeba histolytica, an important intestinal pathogen of humans. We aimed to trace gene histories throughout the adaptation of the aerobic ancestor of Archamoebae to anaerobiosis and throughout the transition from a free-living to a parasitic lifestyle. These events were associated with massive gene losses that, in parasitic lineages, resulted in a reduction in structural features, complete losses of some metabolic pathways, and a reduction in metabolic complexity. By reconstructing the features of the common ancestor of Archamoebae, we estimated preconditions for the evolution of parasitism in this lineage. The ancestor could apparently form chitinous cysts, possessed proteolytic enzyme machinery, compartmentalized the sulfate activation pathway in mitochondrion-related organelles, and possessed the components for anaerobic energy metabolism. After the split of Entamoebidae, this lineage gained genes encoding surface membrane proteins that are involved in host-parasite interactions. In contrast, gene gains identified in the M. balamuthi lineage were predominantly associated with polysaccharide catabolic processes. A phylogenetic analysis of acquired genes suggested an essential role of lateral gene transfer in parasite evolution (Entamoeba) and in adaptation to anaerobic aquatic sediments (Mastigamoeba).


Asunto(s)
Archamoebae/genética , Evolución Biológica , Entamoeba histolytica/genética , Genoma de Protozoos , Parásitos/genética , Adaptación Biológica/genética , Anaerobiosis/genética , Animales , Archamoebae/metabolismo , Transferencia de Gen Horizontal , Tamaño del Genoma , Transcriptoma
8.
Bioinformatics ; 36(6): 1718-1724, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31647547

RESUMEN

MOTIVATION: Metagenomic and metatranscriptomic sequencing have become increasingly popular tools for producing massive amounts of short-read data, often used for the reconstruction of draft genomes or the detection of (active) genes in microbial communities. Unfortunately, sequence assemblies of such datasets generally remain a computationally challenging task. Frequently, researchers are only interested in a specific group of organisms or genes; yet, the assembly of multiple datasets only to identify candidate sequences for a specific question is sometimes prohibitively slow, forcing researchers to select a subset of available datasets to address their question. Here, we present PhyloMagnet, a workflow to screen meta-omics datasets for taxa and genes of interest using gene-centric assembly and phylogenetic placement of sequences. RESULTS: Using PhyloMagnet, we could identify up to 87% of the genera in an in vitro mock community with variable abundances, while the false positive predictions per single gene tree ranged from 0 to 23%. When applied to a group of metagenomes for which a set of metagenome assembled genomes (MAGs) have been published, we could detect the majority of the taxonomic labels that the MAGs had been annotated with. In a metatranscriptomic setting, the phylogenetic placement of assembled contigs corresponds to that of transcripts obtained from transcriptome assembly. AVAILABILITY AND IMPLEMENTATION: PhyloMagnet is built using Nextflow, available at github.com/maxemil/PhyloMagnet and is developed and tested on Linux. It is released under the open source GNU GPL licence and documentation is available at phylomagnet.readthedocs.io. Version 0.5 of PhyloMagnet was used for all benchmarking experiments. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metagenómica , Programas Informáticos , Metagenoma , Filogenia , Transcriptoma
9.
Mol Biol Evol ; 36(10): 2292-2312, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31387118

RESUMEN

The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.


Asunto(s)
Genoma de Protozoos , Membranas Intracelulares , Oxymonadida/genética , Citoesqueleto de Actina , Intrones , Dinámicas Mitocondriales , Oxymonadida/enzimología , Oxymonadida/ultraestructura , Proteoma
10.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28892507

RESUMEN

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Asunto(s)
Blastocystis/genética , Genoma de Protozoos , Blastocystis/metabolismo , Metabolismo de los Hidratos de Carbono , Codón de Terminación , Microbioma Gastrointestinal , Humanos , Intrones , Especificidad de la Especie
11.
Bioessays ; 40(5): e1700242, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29543982

RESUMEN

In a recent BioEssays paper [W. F. Martin, BioEssays 2017, 39, 1700115], William Martin sharply criticizes evolutionary interpretations that involve lateral gene transfer (LGT) into eukaryotic genomes. Most published examples of LGTs in eukaryotes, he suggests, are in fact contaminants, ancestral genes that have been lost from other extant lineages, or the result of artefactual phylogenetic inferences. Martin argues that, except for transfers that occurred from endosymbiotic organelles, eukaryote LGT is insignificant. Here, in reviewing this field, we seek to correct some of the misconceptions presented therein with regard to the evidence for LGT in eukaryotes.


Asunto(s)
Eucariontes , Transferencia de Gen Horizontal , Células Eucariotas , Evolución Molecular , Filogenia
12.
Nature ; 562(7727): 352-353, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30323225
13.
BMC Biol ; 16(1): 137, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30482201

RESUMEN

BACKGROUND: The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea-the first for any goniomonad-to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. RESULTS: We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida. CONCLUSION: We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic "rewiring" that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae.


Asunto(s)
Criptófitas/genética , Evolución Molecular , Genoma , Plastidios/genética , Proteínas Algáceas/análisis , Núcleo Celular/genética , Criptófitas/citología , Filogenia , Triptófano-ARNt Ligasa/análisis
14.
J Cell Sci ; 129(20): 3695-3703, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27672020

RESUMEN

Eukaryogenesis - the emergence of eukaryotic cells - represents a pivotal evolutionary event. With a fundamentally more complex cellular plan compared to prokaryotes, eukaryotes are major contributors to most aspects of life on Earth. For decades, we have understood that eukaryotic origins lie within both the Archaea domain and α-Proteobacteria. However, it is much less clear when, and from which precise ancestors, eukaryotes originated, or the order of emergence of distinctive eukaryotic cellular features. Many competing models for eukaryogenesis have been proposed, but until recently, the absence of discriminatory data meant that a consensus was elusive. Recent advances in paleogeology, phylogenetics, cell biology and microbial diversity, particularly the discovery of the 'Candidatus Lokiarcheaota' phylum, are now providing new insights into these aspects of eukaryogenesis. The new data have allowed the time frame during which eukaryogenesis occurred to be finessed, a more precise identification of the contributing lineages and the biological features of the contributors to be clarified. Considerable advances have now been used to pinpoint the prokaryotic origins of key eukaryotic cellular processes, such as intracellular compartmentalisation, with major implications for models of eukaryogenesis.


Asunto(s)
Células Eucariotas/metabolismo , Fósiles , Filogenia , Archaea/metabolismo , Células Procariotas , Factores de Tiempo
15.
Proc Natl Acad Sci U S A ; 112(33): 10239-46, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-25831547

RESUMEN

Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , ADN Bacteriano/genética , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Bacterias/citología , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , División Celular , Bases de Datos Genéticas , Dictyostelium/metabolismo , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Funciones de Verosimilitud , Datos de Secuencia Molecular , Filogenia , Plastidios/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Mol Biol Evol ; 33(9): 2318-36, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27280585

RESUMEN

Mitochondrion-related organelles (MROs) have arisen independently in a wide range of anaerobic protist lineages. Only a few of these organelles and their functions have been investigated in detail, and most of what is known about MROs comes from studies of parasitic organisms such as the parabasalid Trichomonas vaginalis Here, we describe the MRO of a free-living anaerobic jakobid excavate, Stygiella incarcerata We report an RNAseq-based reconstruction of S. incarcerata's MRO proteome, with an associated biochemical map of the pathways predicted to be present in this organelle. The pyruvate metabolism and oxidative stress response pathways are strikingly similar to those found in the MROs of other anaerobic protists, such as Pygsuia and Trichomonas This elegant example of convergent evolution is suggestive of an anaerobic biochemical 'module' of prokaryotic origins that has been laterally transferred among eukaryotes, enabling them to adapt rapidly to anaerobiosis. We also identified genes corresponding to a variety of mitochondrial processes not found in Trichomonas, including intermembrane space components of the mitochondrial protein import apparatus, and enzymes involved in amino acid metabolism and cardiolipin biosynthesis. In this respect, the MROs of S. incarcerata more closely resemble those of the much more distantly related free-living organisms Pygsuia biforma and Cantina marsupialis, likely reflecting these organisms' shared lifestyle as free-living anaerobes.


Asunto(s)
Eucariontes/genética , Orgánulos/metabolismo , Anaerobiosis , Evolución Biológica , Eucariontes/metabolismo , Evolución Molecular , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Filogenia , Proteoma , Proteínas Protozoarias/genética , Análisis de Secuencia de ARN/métodos , Sulfolobaceae/genética
17.
Mol Biol Evol ; 33(2): 305-10, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26541173

RESUMEN

In a recent article, Nelson-Sathi et al. (NS) report that the origins of major archaeal lineages (MAL) correspond to massive group-specific gene acquisitions via HGT from bacteria (Nelson-Sathi et al. 2015. Origins of major archaeal clades correspond to gene acquisitions from bacteria. Nature 517(7532):77-80.). If correct, this would have fundamental implications for the process of diversification in microbes. However, a reexamination of these data and results shows that the methodology used by NS systematically inflates the number of genes acquired at the root of each MAL, and incorrectly assumes bacterial origins for these genes. A reanalysis of their data with appropriate phylogenetic models accounting for the dynamics of gene gain and loss between lineages supports the continuous acquisition of genes over long periods in the evolution of Archaea.


Asunto(s)
Archaea/genética , Bacterias/genética , Evolución Molecular , Transferencia de Gen Horizontal , Genotipo , Archaea/clasificación , Genes Arqueales , Genes Bacterianos , Genómica , Filogenia
18.
J Theor Biol ; 434: 20-33, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-28254477

RESUMEN

Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.


Asunto(s)
Evolución Biológica , Eucariontes/citología , Simbiosis , Ecosistema , Eucariontes/ultraestructura , Células Eucariotas/ultraestructura , Microbiota
19.
BMC Evol Biol ; 16(1): 109, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27193376

RESUMEN

BACKGROUND: Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway-a core metabolic pathway in a wide range of organisms-is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. RESULTS: Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. CONCLUSION: We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba.


Asunto(s)
Eucariontes/fisiología , Hemo/metabolismo , Kinetoplastida/genética , Kinetoplastida/fisiología , Animales , Evolución Biológica , Eucariontes/clasificación , Transferencia de Gen Horizontal , Kinetoplastida/clasificación , Filogenia , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA