Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Sci ; 134(1)2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33262310

RESUMEN

In invertebrates, UNC-45 regulates myosin stability and functions. Vertebrates have two distinct isoforms of the protein: UNC-45B, expressed in muscle cells only, and UNC-45A, expressed in all cells and implicated in regulating both non-muscle myosin II (NMII)- and microtubule (MT)-associated functions. Here, we show that, in vitro and in human and rat cells, UNC-45A binds to the MT lattice, leading to MT bending, breakage and depolymerization. Furthermore, we show that UNC-45A destabilizes MTs independent of its C-terminal NMII-binding domain and even in the presence of the NMII inhibitor blebbistatin. These findings identified UNC-45A as a novel type of MT-severing protein with a dual non-mutually exclusive role in regulating NMII activity and MT stability. Because many human diseases, from cancer to neurodegenerative diseases, are caused by or associated with deregulation of MT stability, our findings have profound implications in the biology of MTs, as well as the biology of human diseases and possible therapeutic implications for their treatment.This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Microtúbulos , Animales , Humanos , Chaperonas Moleculares , Miosina Tipo II/genética , Miosinas , Ratas
2.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626133

RESUMEN

Ovarian cancer is the leading cause of death from gynecologic malignancy in the Western world. This is due, in part, to the fact that despite standard treatment of surgery and platinum/paclitaxel most patients recur with ultimately chemoresistant disease. Ovarian cancer is a unique form of solid tumor that develops, metastasizes and recurs in the same space, the abdominal cavity, which becomes a unique microenvironment characterized by ascites, hypoxia and low glucose levels. It is under these conditions that cancer cells adapt and switch to mitochondrial respiration, which becomes crucial to their survival, and therefore an ideal metabolic target for chemoresistant ovarian cancer. Importantly, independent of microenvironmental factors, mitochondria spatial redistribution has been associated to both tumor metastasis and chemoresistance in ovarian cancer while specific sets of genetic mutations have been shown to cause aberrant dependence on mitochondrial pathways in the most aggressive ovarian cancer subtypes. In this review we summarize on targeting mitochondria for treatment of chemoresistant ovarian cancer and current state of understanding of the role of mitochondria respiration in ovarian cancer. We feel this is an important and timely topic given that ovarian cancer remains the deadliest of the gynecological diseases, and that the mitochondrial pathway has recently emerged as critical in sustaining solid tumor progression.


Asunto(s)
Resistencia a Antineoplásicos , Mitocondrias/metabolismo , Neoplasias Ováricas/terapia , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Esferoides Celulares/patología , Microambiente Tumoral
3.
Mol Cancer Res ; 17(2): 370-383, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30322860

RESUMEN

UNC-45A, a highly conserved member of the UCS (UNC45A/CRO1/SHE4P) protein family of cochaperones, plays an important role in regulating cytoskeletal-associated functions in invertebrates and mammalian cells, including cytokinesis, exocytosis, cell motility, and neuronal development. Here, for the first time, UNC-45A is demonstrated to function as a mitotic spindle-associated protein that destabilizes microtubules (MT) activity. Using in vitro biophysical reconstitution and total internal reflection fluorescence microscopy analysis, we reveal that UNC-45A directly binds to taxol-stabilized MTs in the absence of any additional cellular cofactors or other MT-associated proteins and acts as an ATP-independent MT destabilizer. In cells, UNC-45A binds to and destabilizes mitotic spindles, and its depletion causes severe defects in chromosome congression and segregation. UNC-45A is overexpressed in human clinical specimens from chemoresistant ovarian cancer and that UNC-45A-overexpressing cells resist chromosome missegregation and aneuploidy when treated with clinically relevant concentrations of paclitaxel. Lastly, UNC-45A depletion exacerbates paclitaxel-mediated stabilizing effects on mitotic spindles and restores sensitivity to paclitaxel. IMPLICATIONS: These findings reveal novel and significant roles for UNC-45A in regulation of cytoskeletal dynamics, broadening our understanding of the basic mechanisms regulating MT stability and human cancer susceptibility to paclitaxel, one of the most widely used chemotherapy agents for the treatment of human cancers.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Células HeLa , Humanos , Ratones , Células 3T3 NIH
4.
Horm Cancer ; 9(5): 326-337, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29951943

RESUMEN

Despite advances in surgical technique and adjuvant treatment, endometrial cancer has recently seen an increase in incidence and mortality in the USA. The majority of endometrial cancers can be cured by surgery alone or in combination with adjuvant chemo- or radiotherapy; however, a subset of patients experience recurrence for reasons that remain unclear. Recurrence is associated with chemoresistance to carboplatin and paclitaxel and consequentially, high mortality. Understanding the pathways involved in endometrial cancer chemoresistance is paramount for the identification of biomarkers and novel molecular targets for this disease. Here, we generated the first matched pairs of carboplatin-sensitive/carboplatin-resistant and paclitaxel-sensitive/paclitaxel-resistant endometrial cancer cells and subjected them to bulk RNA sequencing analysis. We found that 45 genes are commonly upregulated in carboplatin- and paclitaxel-resistant cells as compared to controls. Of these, the leukemia inhibitory factor, (LIF), the protein tyrosine phosphatase type IVA, member 3 (PTP4A3), and the transforming growth factor beta 1 (TGFB1) showed a highly significant correlation between expression level and endometrial cancer overall survival (OS) and can stratify the 545 endometrial cancer patients in the TCGA cohort into a high-risk and low-risk-cohorts. Additionally, four genes within the 45 upregulated chemoresistance-associated genes are ADAMTS5, MICAL2, STAT5A, and PTP4A3 codes for proteins for which small-molecule inhibitors already exist. We identified these proteins as molecular targets for chemoresistant endometrial cancer and showed that treatment with their correspondent inhibitors effectively killed otherwise chemoresistant cells. Collectively, these findings underline the utility of matched pair of chemosensitive and chemoresistant cancer cells to identify markers for endometrial cancer risk stratification and to serve as a pharmacogenomics model for identification of alternative chemotherapy approaches for treatment of patients with recurrent disease.


Asunto(s)
Biomarcadores/química , Carboplatino/uso terapéutico , Neoplasias Endometriales/tratamiento farmacológico , Paclitaxel/uso terapéutico , Análisis de Secuencia de ARN/métodos , Carboplatino/farmacología , Neoplasias Endometriales/patología , Femenino , Humanos , Masculino , Paclitaxel/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA