RESUMEN
The epidemic of mesothelioma in Cappadocia, Turkey, is unprecedented in medical history. In three Cappadocian villages, Karain, Tuzkoy and "old" Sarihidir, about 50% of all deaths (including neonatal deaths and traffic fatalities) have been caused by mesothelioma. No other epidemic in medical history has caused such a high incidence of death. This is even more unusual when considering that (I) epidemics are caused by infectious agents, not cancer, and (II) mesothelioma is a rare cancer. World-wide mesothelioma incidence varies between 1/106 in areas with no asbestos industry to about 10-30/106 in areas with asbestos industry. This article reviews how the mesothelioma epidemic was discovered in Cappadocia by Dr. Baris (my mentor), how we initially linked the epidemic to erionite exposure, and later (with Dr. Carbone) to the interaction between genetic predisposition and environmental exposure. Our team's work had an important positive impact on the lives of those living in Cappadocia and also in many genetically predisposed families living around the world. I will discuss how the work that started in three remote Cappadocian villages led to the award of a NCI P01 grant to support our studies. Our studies proved that genetics modulates mineral fiber carcinogenesis and led to the discovery that carriers of germline BAP1 mutations have a very high risk of developing mesothelioma and other malignancies. A new, very active field of research developed following our discoveries to elucidate the mechanism by which BAP1 modulates mineral fiber carcinogenesis as well as to identify additional genes that when mutated increase the risk of mesothelioma and other environmentally related cancers. I am the only surviving member of this research team who saw all the phases of this research and I believe it is important to provide an accurate report, which hopefully will inspire others.
RESUMEN
OBJECTIVES: Prior studies have been performed on cotton textile plants throughout the world. This study was planned to identify the rate of byssinosis and chronic obstructive pulmonary disease (COPD) in hemp and jute workers and those who worked with both of them. MATERIAL AND METHODS: The study was realized in a factory which consecutively processed hemp and jute. The study enrollment included 266 people, 164 of whom were active workers and 102 were retired. A questionnaire, plain chest X-rays, physical examination and pulmonary function tests were performed. Dust levels were measured in various sections of the factory during 8 h work shifts. Endotoxin levels of various quality hemp fibers and dusts were measured. RESULTS: The rate of byssinosis (28.2%) was higher among the workers that who exposed to both jute and hemp dust. The frequency of chronic bronchitis in retired workers who previously smoked was higher (20%) as compared to currently smoking workers (17%). High dust levels were measured in some parts of the factory (mean (M) = 2.69 mg/m3). Working in dense dust areas, active smoking, being older than 40 years of age, being an ex-smoker, and working in the factory for a period exceeding 15 years were significantly associated with bronchitis and emphysema development. High endotoxin levels were determined for fine hemp dust (605 EU/mg), coarse hemp dust (336 EU/mg) and poor quality hemp fibers (114 EU/mg), whereas in fresh hemp stalks the level of endotoxin was determined to be lower (0.27 EU/mg). CONCLUSIONS: Because of high exposures to jute and hemp dusts that are associated with high byssinosis rates, personal protection and environmental hygiene is crucial to prevention of byssinosis.