Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Phys Chem A ; 128(28): 5419-5434, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38968003

RESUMEN

The air-water interface (AWI) is a ubiquitous reaction field different from the bulk phase where unexpected reactions and physical processes often occur. The AWI is a region where air contacts cloud droplets, aerosol particles, the ocean surface, and biological surfaces such as fluids that line human epithelia. In Earth's atmosphere, short-lived intermediates are expected to be generated at the AWI during multiphase reactions. Recent experimental developments have enabled the direct detection of atmospherically relevant, short-lived intermediates at the AWI. For example, spray ionization mass spectrometric analysis of water microjets exposed to a gaseous mixture of ozone and water vapor combined with a 266 nm laser flash photolysis system (LFP-SIMS) has been used to directly probe organic peroxyl radicals (RO2·) produced by interfacial hydroxyl radicals (OH·) + organic compound reactions. OH· emitted immediately after the laser flash photolysis of carboxylic acid at the gas-liquid interface have been directly detected by time-resolved, laser-induced florescence techniques that can be used to study atmospheric multiphase photoreactions. In this Featured Article, we show some recent experimental advances in the detection of atmospherically important intermediates at the AWI and the associated reaction mechanisms. We also discuss current challenges and future prospects for atmospheric multiphase chemistry.

2.
J Phys Chem A ; 127(13): 2975-2985, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36952246

RESUMEN

Levoglucosan (Levo) is a major saccharide formed by the combustion of cellulosic materials. Levo was once considered an inert tracer of biomass-burning aerosols; however, recent studies have indicated that Levo in atmospheric condensed phases does indeed react with atmospheric reactants. Here, we report the results of a time-resolved mass spectrometric study of the oxidation of Levo in aqueous solutions with ferrous ion (Fe2+)/hydrogen peroxide (H2O2) (i.e., Fenton's reagent). The major products of the Fenton oxidation of Levo were oxygen-atom-incorporated species (Levo+nO, n = 1-3). Experiments using Levo-d7 (all C-H bonds replaced by C-D) and D2O or H218O as the solvent revealed that OH predominantly (∼85% of all C-H bonds) abstracts H atoms attached to the carbon atoms possessing a hydroxyl moiety (-OH), which is followed by the formation of a carbonyl moiety (-C═O). Subsequent hydration of these products results in the formation of geminal diols (detected as Levo+1O species). Our results also suggest the formation of α-hydroxy-hydroperoxides (detected as Levo+2O species) that exist in equilibrium, with the compounds possessing a -C═O moiety and with H2O2. H-abstractions from -O-H were found to be a minor reaction pathway (≤5% of all H-abstractions). The present proposed oxidation mechanisms improve our understanding of how the chemical components of atmospheric condensed phases change by metal-catalyzed aging processes without sunlight.

3.
Biol Lett ; 18(5): 20210629, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35506238

RESUMEN

One of the characteristic aspects of odour sensing in humans is the activation of olfactory receptors in a slightly different manner in response to different enantiomers. Here, we focused on whether plants showed enantiomer-specific response similar to that in humans. We exposed Arabidopsis seedlings to methanol (control) and (+)- or (-)-borneol, and found that only (+)-borneol reduced the root length. Furthermore, the root-tip width was more increased upon (+)-borneol exposure than upon (-)-borneol exposure. In addition, root-hair formation was observed near the root tip in response to (+)-borneol. Auxin signalling was strongly reduced in the root tip following exposure to (+)-borneol, but was detected following exposure to (-)-borneol and methanol. Similarly, in the root tip, the activity of cyclin B1:1 was detected on exposure to (-)-borneol and methanol, but not on exposure to (+)-borneol, indicating that (+)-borneol inhibits the meristematic activity in the root. These results partially explain the (+)-borneol-specific reduction in the root length of Arabidopsis. Our results indicate the presence of a sensing system specific for (+)-borneol in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Canfanos , Humanos , Ácidos Indolacéticos/farmacología , Meristema/fisiología , Metanol , Raíces de Plantas/fisiología
4.
Phys Chem Chem Phys ; 24(19): 11562-11572, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35506905

RESUMEN

The oxidation of volatile organic compounds in the atmosphere produces organic hydroperoxides (ROOHs) that typically possess not only -OOH but also other functionalities such as -OH and -C(O). Because of their high hydrophilicity and low volatility, such multifunctionalized ROOHs are expected to be taken up in atmospheric condensed phases such as aerosols and fog/cloud droplets. However, the characteristics of ROOHs that control their fates and lifetimes in liquid phases are poorly understood. Here, we report a study of the liquid-phase decomposition kinetics of multifunctionalized α-alkoxyalkyl-hydroperoxides (α-AHs) that possessed an ether, a carbonyl, a hydroperoxide, and two hydroxy groups. These ROOHs were synthesized by ozonolysis of α-terpineol in water in the presence of 1,3-propanediol, 1,4-butanediol, or 1,5-pentanediol. Their decomposition products were detected as chloride anion adducts by electrospray mass spectrometry as a function of reaction time. Experiments using H218O and D2O revealed that hemiacetal species were α-AH decomposition products that further transformed into other products. The result that the rate coefficients (k) of the decomposition of C15 α-AHs increased exponentially from pH 5.0 to 3.9 was consistent with an H+-catalyzed decomposition mechanism. The temperature dependence of k and an Arrhenius plot yielded activation energies (Ea) of 15.7 ± 0.8, 15.0 ± 2.4, and 15.9 ± 0.3 kcal mol-1 for the decomposition of α-AHs derived from the reaction of α-terpineol CIs with 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol, respectively. The determined Ea values were compared with those of related ROOHs. We found that alkyl chain length is not a critical factor for the decomposition mechanism, whereas the presence of additional -OH groups would modulate the reaction barriers to decomposition via the formation of hydrogen-bonding with surrounding water molecules. The derived Ea values for the decomposition of the multifunctionalized, terpenoid-derived α-AHs will facilitate atmospheric modeling by serving as representative values for ROOHs in atmospheric condensed phases.


Asunto(s)
Atmósfera , Peróxido de Hidrógeno , Aerosoles , Alcoholes , Agua
5.
J Phys Chem A ; 126(32): 5386-5397, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35921086

RESUMEN

1,2,4-Trioxolanes, known as secondary ozonides (SOZs), are key products of ozonolysis of biogenic terpenoids. Functionalized terpenoid-derived SOZs are readily taken up into atmospheric aerosols; however, their condensed-phase fates remain unknown. Here, we report the results of a time-dependent mass spectrometric investigation into the liquid-phase fates of C10 and C13 SOZs synthesized by ozonolysis of a C10 monoterpene alcohol (α-terpineol) in water:acetone (1:1 = vol:vol) mixtures. Isomerization of Criegee intermediates and bimolecular reaction of Criegee intermediates with acetone produced C10 and C13 SOZs, respectively, which were detected as their Na+-adducts by positive-ion electrospray mass spectrometry. Use of CD3COCD3, D2O, and H218O solvents enabled identification of three types of C13 SOZs (aldehyde, ketone, and lactol) and other products. These SOZs were surprisingly stable in water:acetone (1:1) mixtures at T = 298 K, with some persisting for at least a week. Theoretical calculations supported the high stability of the lactol-type C13 SOZ formed from the aldehyde-type C13 SOZ via intramolecular rearrangement. The present results suggest that terpenoid-derived SOZs can persist in atmospheric condensed phases, potentially until they are delivered to the epithelial lining fluid of the pulmonary alveoli via inhaled particulate matter, where they may exert hitherto unrecognized adverse health effects.


Asunto(s)
Ozono , Terpenos , Acetona , Aldehídos , Compuestos Heterocíclicos , Ozono/química , Agua
6.
Environ Sci Technol ; 55(19): 12893-12901, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34525797

RESUMEN

We report the results of a mass spectrometric study of the effects of atmospherically relevant metal ions on the decomposition of α-hydroxyalkyl-hydroperoxides (α-HHs) derived from ozonolysis of α-terpineol in aqueous solutions. By direct mass spectrometric detection of chloride adducts of α-HHs, we assessed the temporal profiles of α-HHs and other products in the presence of metal ions. In addition, reactions between α-HHs and FeCl2 in the presence of excess DMSO showed that the amount of hydroxyl radicals formed in a mixture of α-terpineol, O3, and FeCl2 was 5.7 ± 0.8% of the amount formed in a mixture of H2O2 and FeCl2. The first-order rate constants for the decay of α-HHs produced by ozonolysis of α-terpineol in the presence of 5 mM acetate buffer at a pH of 5.1 ± 0.1 were determined to be (4.5 ± 0.1) × 10-4 s-1 (no metal ions), (4.7 ± 0.2) × 10-4 s-1 (with 0.05 mM Fe2+), (4.7 ± 0.1) × 10-4 s-1 (with 0.05 mM Zn2+), and (4.8 ± 0.2) × 10-4 s-1 (with 0.05 mM Cu2+). We propose that in acidic aqueous media, the reaction of α-HHs with Fe2+ is outcompeted by H+-catalyzed decomposition of α-HHs, which produces the corresponding aldehydes and H2O2, which can in turn react with Fe2+ to form hydroxyl radicals.


Asunto(s)
Alcoholes , Peróxido de Hidrógeno , Radical Hidroxilo , Terpenos , Agua
7.
Phys Chem Chem Phys ; 23(8): 4605-4614, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33620039

RESUMEN

In the atmosphere, carbonyl oxides known as Criegee intermediates are produced mainly by ozonolysis of volatile organic compounds containing C[double bond, length as m-dash]C double bonds, such as biogenic terpenoids. Criegee intermediates can react with OH-containing species to produce labile organic hydroperoxides (ROOHs) that are taken up into atmospheric condensed phases. Besides water, alcohols are an important reaction partner of Criegee intermediates and can convert them into α-alkoxyalkyl-hydroperoxides (α-AHs), R1R2C(-OOH)(-OR'). Here, we report a study on the aqueous-phase fates of α-AHs derived from ozonolysis of α-terpineol in the presence of methanol, ethanol, 1-propanol, and 2-propanol. The α-terpineol α-AHs and the decomposition products were detected as their chloride adducts by electrospray mass spectrometry as a function of reaction time. Our discovery that the rate of decomposition of α-AHs increased as the pH decreased from 5.9 to 3.8 implied that the decomposition mechanism was catalyzed by H+. The use of isotope solvent experiments revealed that a primary decomposition product of α-AHs in an acidic aqueous solution was a hemiacetal R1R2C(-OH)(-OR') species that was further transformed into other products such as lactols. The proposed H+-catalyzed decomposition of α-AHs, which provides H2O2 and multifunctional species in ambient aerosol particles, may be faster than other degradation processes (e.g., photolysis by solar radiation).

8.
J Phys Chem A ; 125(21): 4513-4523, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-33904735

RESUMEN

The fates of organic hydroperoxides (ROOHs) in atmospheric condensed phases are key to understanding the oxidative and toxicological potentials of particulate matter. Recently, mass spectrometric detection of ROOHs as chloride anion adducts has revealed that liquid-phase α-hydroxyalkyl hydroperoxides, derived from hydration of carbonyl oxides (Criegee intermediates), decompose to geminal diols and H2O2 over a time frame that is sensitively dependent on the water content, pH, and temperature of the reaction solution. Based on these findings, it has been proposed that H+-catalyzed conversion of ROOHs to ROHs + H2O2 is a key process for the decomposition of ROOHs that bypasses radical formation. In this perspective, we discuss our current understanding of the aqueous-phase decomposition of atmospherically relevant ROOHs, including ROOHs derived from reaction between Criegee intermediates and alcohols or carboxylic acids, and of highly oxygenated molecules (HOMs). Implications and future challenges are also discussed.


Asunto(s)
Atmósfera/química , Peróxidos/química , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Peróxidos/análisis , Termodinámica , Agua/química
9.
Environ Sci Technol ; 54(17): 10561-10569, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786584

RESUMEN

In the atmosphere, most biogenic terpenes undergo ozonolysis in the presence of water to form reactive α-hydroxyalkyl-hydroperoxides (α-HHs), and the lifetimes of these α-HHs are a key parameter for understanding the processes that occur during the aging of atmospheric particles. We previously reported that α-HHs generated by ozonolysis of terpenes decompose in water to give H2O2 and the corresponding aldehydes, which undergo hydration to form gem-diols. Herein, we report that this decomposition process was dramatically accelerated by acidification of the water with oxalic, acetic, hexanoic, cis-pinonic, or hydrochloric acid. In acidic solution, the temporal profiles of the α-HHs, detected as their chloride adducts by electrospray mass spectrometry, showed single-exponential decays in the pH range from 4.1 to 6.1, and the first-order rate coefficients (k) for the decays increased with decreasing pH. The lifetime of the α-HH derived from α-terpineol was 128 min (k = (1.3 ± 0.4) × 10-4 s-1) at pH 6.1 but only 8 min (k = (2.1 ± 0.1) × 10-3 s-1) at pH 4.1. Because the rate coefficients increased as the pH decreased and the increase depended on pH rather than on the properties of the acid, we propose that the decomposition of the α-HHs in water was specifically catalyzed by H+. Fast H+-catalyzed decomposition of α-HHs could be an important source of H2O2 and multifunctionalized compounds found in ambient atmospheric particles.


Asunto(s)
Peróxido de Hidrógeno , Agua , Atmósfera , Catálisis , Protones
10.
Environ Sci Technol ; 54(7): 3890-3899, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32131591

RESUMEN

The α-hydroxyalkyl-hydroperoxides [R-(H)C(-OH)(-OOH), α-HH] produced in the ozonolysis of unsaturated organic compounds may contribute to secondary organic aerosol (SOA) aging. α-HHs' inherent instability, however, hampers their detection and a positive assessment of their actual role. Here we report, for the first time, the rates and products of the decomposition of the α-HHs generated in the ozonolysis of atmospherically important monoterpenes α-pinene (α-P), d-limonene (d-L), γ-terpinene (γ-Tn), and α-terpineol (α-Tp) in water/acetonitrile (W/AN) mixtures. We detect α-HHs and multifunctional decomposition products as chloride adducts by online electrospray ionization mass spectrometry. Experiments involving D2O and H218O, instead of H216O, and an OH-radical scavenger show that α-HHs decompose into gem-diols + H2O2 rather than free radicals. α-HHs decay mono- or biexponentially depending on molecular structure and solvent composition. e-Fold times, τ1/e, in water-rich solvent mixtures range from τ1/e = 15-45 min for monoterpene-derived α-HHs to τ1/e > 103 min for the α-Tp-derived α-HH. All τ1/e's dramatically increase in <20% (v/v) water. Decay rates of the α-Tp-derived α-HH in pure water increase at lower pH (2.3 ≤ pH ≤ 3.3). The hydroperoxides detected in day-old SOA samples may reflect their increased stability in water-poor media and/or the slow decomposition of α-HHs from functionalized terpenes.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Aerosoles , Peróxido de Hidrógeno , Monoterpenos , Terpenos
11.
J Phys Chem A ; 124(49): 10288-10295, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33231452

RESUMEN

Ozonolysis of unsaturated organic species with water produces α-hydroxyalkyl-hydroperoxides (α-HHs), which are reactive intermediates that lead to the formation of H2O2 and multifunctionalized species in atmospheric condensed phases. Here, we report temperature-dependent rate coefficients (k) for the aqueous-phase decomposition of α-terpineol α-HHs at 283-318 K and terpinen-4-ol α-HHs at 313-328 K. The temporal profiles of α-HH signals, detected as chloride adducts by negative-ion electrospray mass spectrometry, showed single-exponential decay, and the derived first-order k for α-HH decomposition increased as temperature increased, e.g., k(288 K) = (4.7 ± 0.2) × 10-5, k(298 K) = (1.5 ± 0.4) × 10-4, k(308 K) = (3.4 ± 0.9) × 10-4, k(318 K) = (1.0 ± 0.2) × 10-3 s-1 for α-terpineol α-HHs at pH 6.1. Arrhenius plot analysis yielded activation energies of 17.9 ± 0.7 (pH 6.1) and 17.1 ± 0.2 kcal mol-1 (pH 6.2) for the decomposition of α-terpineol and terpinen-4-ol α-HHs, respectively. Activation energies of 18.6 ± 0.2 and 19.2 ± 0.5 kcal mol-1 were also obtained for the decomposition of α-terpineol α-HHs in acidified water at pH 5.3 and 4.5, respectively. Theoretical kinetic and thermodynamic calculations confirmed that both water-catalyzed and proton-catalyzed mechanisms play important roles in the decomposition of these α-HHs. The relatively strong temperature dependence of k suggests that the lifetime of these α-HHs in aqueous phases (e.g., aqueous aerosols, fog, cloud droplets, wet films) is controlled not only by the water content and pH but also by the temperature of these media.

12.
Environ Sci Technol ; 53(10): 5750-5757, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31017766

RESUMEN

Ozone readily reacts with olefins with the formation of more reactive Criegee intermediates (CIs). The transient CIs impact HO x cycles, and they play a role in new particle formation in the troposphere. Oxidation by O3 occurs both in the gas-phase, in the liquid phase, and at air-water and air-aerosol interfaces. In light of the importance of O3 in environmental and engineered chemical transformations, we have investigated the ozonolysis mechanisms of a triolefin C15-alcohol, nerolidol (Nero, a biogenic sesquiterpene), at the air-water interface in the presence of acetonitrile. Surface-sensitive pneumatic ionization mass spectrometric detection of α-hydroxy-hydroperoxides and functionalized carboxylates, generated by the hydration and isomerization of CIs, respectively, enables us to evaluate the relative reactivity of each C=C toward O3. In addition, we compare bulk-phase ozonolysis chemistry to similar reactions taking place at the air-water interface. Our experimental results show that O3 reacts primarily with the (CH3)2C=CH- and -(CH3)C=CH- moieties (>∼98%), while the O3 attack on the terminal -HC=CH2 site (<∼2%) is a minor pathway during both interfacial and bulk ozonolysis. The presence of functionalized-carboxylates on interfaces but not in bulk-phase reactions with O3 indicates that the isomerization of the CIs is not hindered at the air-water interface due to the lower availability of water .


Asunto(s)
Ozono , Sesquiterpenos , Aerosoles , Agua
13.
J Phys Chem A ; 123(32): 7148-7155, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31329444

RESUMEN

Acidity changes the physical properties of atmospheric aerosol particles and the mechanisms of reactions that occur therein and on the surface. Here, we used surface-sensitive pneumatic ionization mass spectrometry to investigate the effects of pH on the heterogeneous reactions of aqueous α-terpineol (C10H17OH), a representative monoterpene alcohol, with gaseous ozone. Rapid (≤10 µs) ozonolysis of α-terpineol produced Criegee intermediates (CIs, zwitterionic/diradical carbonyl oxides) on the surface of water microjets. We studied the effects of microjet bulk pH (1-11) on the formation of functionalized carboxylate and α-hydroxy-hydroperoxide chloride adduct (HH-Cl-) products generated by isomerization and hydration of α-terpineol CIs, respectively. Compared with the signal at pH ≈ 6, the mass spectral signal of HH-Cl- was less intense under both basic and more acidic conditions, whereas the intensity of the functionalized carboxylate signal increased with increasing pH up to 4 and then remained constant. The decrease of HH-Cl- signals at bulk pH values of >6 is attributable to the accumulation of OH- at the air-water interface that suppresses the relative abundance of hydrophilic HH and Cl-. The present study suggests that α-terpineol in ambient aqueous organic aerosols will be converted into much lower volatile and potentially toxic organic hydroperoxides during the heterogeneous ozonolysis.

14.
J Chem Phys ; 150(2): 024702, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646725

RESUMEN

Many chemical reactions in Nature, the laboratory, and chemical industry occur in solvent mixtures that bring together species of dissimilar solubilities. Solvent mixtures are visually homogeneous, but are not randomly mixed at the molecular scale. In the all-important binary water-hydrotrope mixtures, small-angle neutron and dynamic light scattering experiments reveal the existence of short-lived (<50 ps), short-ranged (∼1 nm) concentration fluctuations. The presence of hydrophobic solutes stabilizes and extends such fluctuations into persistent, mesoscopic (10-100 nm) inhomogeneities. While the existence of inhomogeneities is well established, their impacts on reactivity are not fully understood. Here, we search for chemical signatures of inhomogeneities on the surfaces of W:X mixtures (W = water; X = acetonitrile, tetrahydrofuran, or 1,4-dioxane) by studying the reactions of Criegee intermediates (CIs) generated in situ from O3(g) addition to a hydrophobic olefin (OL) solute. Once formed, CIs isomerize to functionalized carboxylic acids (FC) or add water to produce α-hydroxy-hydroperoxides (HH), as detected by surface-specific, online pneumatic ionization mass spectrometry. Since only the formation of HH requires the presence of water, the dependence of the R = HH/FC ratio on water molar fraction x w expresses the accessibility of water to CIs on the surfaces of mixtures. The finding that R increases quasi-exponentially with x w in all solvent mixtures is consistent with CIs being preferentially produced (from their OL hydrophobic precursor) in X-rich, long-lived OL:X m W n interfacial clusters, rather than randomly dispersed on W:X surfaces. R vs x w dependences therefore reflect the average ⟨m, n⟩ composition of OL:X m W n interfacial clusters, as weighted by cluster reorganization dynamics. Water in large, rigid clusters could be less accessible to CIs than in smaller but more flexible clusters of lower water content. Since mesoscale inhomogeneities are intrinsic to most solvent mixtures, these phenomena should be quite general.

15.
Phys Chem Chem Phys ; 20(39): 25256-25267, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30276402

RESUMEN

Atmospheric particles contain a wide range of oligomers, but the formation mechanism and the origin of complexity are still unclear. Here, we report the direct detection of carbocationic oligomers generated from the exposure of a series of cyclic unsaturated hydrocarbon gases to acidic water microjets through interface-sensitive mass spectrometry. By changing gas concentrations, H2O (D2O) solvent, bulk pH and comparing results from experiments on acyclic, cyclic, and aromatic compounds, we elucidated three competing reaction mechanisms: chain propagation (CP), chain transfer (CT), and hydride abstraction (HA). We found that conjugative π-electron delocalization in the carbocation is the most important factor for the interfacial oligomerization processes. Our results showed that electrophilic attack on C[double bond, length as m-dash]C double bonds (CP and CT) is limited, and that on C-H single bonds (HA) is enhanced for carbocations lacking conjugation, which is not the case in bulk organic solutions. Carbocationic oligomers generated by the encounter of gaseous unsaturated hydrocarbons and acidic water surfaces potentially contribute to the molecular complexity in atmospheric particles.

16.
Phys Chem Chem Phys ; 20(22): 15400-15410, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29796563

RESUMEN

Recent studies have shown that atmospheric particles are sufficiently acidic to enhance the uptake of unsaturated volatile organic compounds (VOCs) by triggering acid-catalyzed oligomerization. Controlling factors of oligomerization at the aqueous surfaces, however, remain to be elucidated. Herein, isoprene (2-methyl-1,3-butadiene, ISO), 1,3-butadiene (1,3-b), 1,4-pentadiene (1,4-p), 1-pentene (1-p), and 2-pentene (2-p) vapors are exposed to an acidic water microjet (1 ≤ pH ≤ 5), where cationic products are generated on its surface within ∼10 µs and directly detected using surface-sensitive mass spectrometry. We found that carbocations form at the air-water interface in all the cases, whereas the extent of oligomerization largely depends on the structure in the following order: ISO ≫ 1,3-b > 1,4-p ≫ 1-p ≈ 2-p. Importantly, the cationic oligomerization of ISO yields a protonated decamer ((ISO)10H+, a C50 species of m/z 681.6), while the pentenes 1-p/2-p remain as protonated monomers. We suggest that ISO oligomerization is uniquely facilitated by (1) the resonance stabilization of (ISO)H+ through the formation of a tertiary carbocation with a conjugated C[double bond, length as m-dash]C bond pair, and (2) π-electron enrichment induced by the neighboring methyl group. Experiments in D2O and D2O : H2O mixtures revealed that ISO oligomerization on the acidic water surface proceeds via two competitive mechanisms: chain-propagation and proton-exchange reactions. Furthermore, we found that ISO carbocations undergo addition to relatively inert 1-p, generating hitherto uncharacterized co-oligomers.

17.
J Phys Chem A ; 122(30): 6303-6310, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29989413

RESUMEN

Secondary organic aerosol (SOA) found in polluted mega-cities contains benzoic acid (BA) as a major organic acid in addition to a variety of species including alkenes. In polluted air, ozone could be a major oxidizer for SOA and induces subsequent reactions involving Criegee intermediates (CIs, carbonyl oxide, RR'C•-O-O•/RR'C═O+-O-) formed by the -C═C- + O3 reaction at the gas/liquid interface. The possibility that abundant BA could be an effective scavenger of CIs at the interface remains to be investigated by direct experiments. Here, we showed that amphiphilic BA is able to compete with water molecules for the CIs produced in the prompt ozonolysis of ß-caryophyllene on the surface of a water/acetonitrile solvent microjet by generating hitherto uncharacterized C22 ester hydroperoxide products. Competition between BA vs octanoic acid vs cis-pinonic acid toward CIs reveals that BA is a much less-efficient scavenger of CIs on aqueous organic surfaces. We attribute it to the surface-specific orientation of BA at the gas/liquid interface, where the reactive -C(O)OH group is fully hydrated and not available for CIs generated at the topmost layers.

18.
J Phys Chem A ; 122(39): 7910-7917, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30180579

RESUMEN

Biogenic monoterpenes are major sources of Criegee intermediates (CIs) in the troposphere. Recent studies underscored the importance of their heterogeneous chemistry. The study of monoterpene CI reactions on liquid surfaces, however, is challenging due to the lack of suitable probes. Here, we report the first mass spectrometric detection of the intermediates and products, which include labile hydroperoxides, from reactions of CIs of representative monoterpenes (α-terpinene, γ-terpinene, terpinolene, d-limonene, α-pinene) with water, cis-pinonic acid (CPA) and octanoic acid (OA) on the surface of liquid microjets. Significantly, the relative yields of α-hydroxy-hydroperoxides production from CIs hydration at the gas-liquid interface-α-terpinene (1.00) ≫ d-limonene (0.18) > γ-terpinene (0.11) ∼ terpinolene (0.10) ≫ α-pinene (0.01)-do not track the rate constants of their gas-phase ozonolyses. Notably, in contrast with the inertness of the other CIs, the CIs derived from α-terpinene ozonolysis readily react with CPA and OA to produce C20 and C18 ester hydroperoxides, respectively. Present results reveal hitherto unknown structural effects on the reactivities of CIs at aqueous interfaces.

19.
Environ Sci Technol ; 51(23): 13545-13567, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29111690

RESUMEN

Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epidemiological exposure-response functions indicates that ambient air pollution causes more than four million premature deaths per year. Epidemiological studies usually refer to PM mass concentrations, but some health effects may relate to specific constituents such as bioaerosols, polycyclic aromatic compounds, and transition metals. Various analytical techniques and cellular and molecular assays are applied to assess the redox activity of PM and the formation of reactive oxygen species. Multiphase chemical interactions of lung antioxidants with atmospheric pollutants are crucial to the mechanistic and molecular understanding of oxidative stress upon respiratory deposition. The role of distinct PM components in health impacts and mortality needs to be clarified by integrated research on various spatiotemporal scales for better evaluation and mitigation of aerosol effects on public health in the Anthropocene.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Estudios Epidemiológicos , Contaminación del Aire , Material Particulado
20.
Phys Chem Chem Phys ; 19(26): 17044-17051, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28643829

RESUMEN

cis-Pinonic acid (CPA), the main product of the atmospheric oxidation of biogenic α-pinene emissions and a major component of secondary organic aerosol (SOA), is a potentially key species en route to extremely low volatility compounds. Here, we report that CPA is an exceptionally efficient scavenger of Criegee intermediates (CIs) on aqueous surfaces. Against expectations, millimolar CPA (a surface-active C10 keto-carboxylic acid possessing a rigid skeleton) is able to compete with 23 M bulk water for the CIs produced in the ozonolysis of sesquiterpene solutes by O3(g) on the surface of a water:acetonitrile solvent. The significance of this finding is that CPA reactions with sesquiterpene CIs on the surface of aqueous organic aerosols would directly generate C25 species. The finding that competitive reactions at the air-liquid interface depend on interfacial rather than bulk reactant concentrations should be incorporated in current chemical models dealing with SOA formation, growth and aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA