Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(7): 104905, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302553

RESUMEN

A primary pathology of Alzheimer's disease (AD) is amyloid ß (Aß) deposition in brain parenchyma and blood vessels, the latter being called cerebral amyloid angiopathy (CAA). Parenchymal amyloid plaques presumably originate from neuronal Aß precursor protein (APP). Although vascular amyloid deposits' origins remain unclear, endothelial APP expression in APP knock-in mice was recently shown to expand CAA pathology, highlighting endothelial APP's importance. Furthermore, two types of endothelial APP-highly O-glycosylated APP and hypo-O-glycosylated APP-have been biochemically identified, but only the former is cleaved for Aß production, indicating the critical relationship between APP O-glycosylation and processing. Here, we analyzed APP glycosylation and its intracellular trafficking in neurons and endothelial cells. Although protein glycosylation is generally believed to precede cell surface trafficking, which was true for neuronal APP, we unexpectedly observed that hypo-O-glycosylated APP is externalized to the endothelial cell surface and transported back to the Golgi apparatus, where it then acquires additional O-glycans. Knockdown of genes encoding enzymes initiating APP O-glycosylation significantly reduced Aß production, suggesting this non-classical glycosylation pathway contributes to CAA pathology and is a novel therapeutic target.


Asunto(s)
Acetilgalactosamina , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Angiopatía Amiloide Cerebral , Glicosilación , Animales , Ratones , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/biosíntesis , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Angiopatía Amiloide Cerebral/complicaciones , Angiopatía Amiloide Cerebral/metabolismo , Angiopatía Amiloide Cerebral/patología , Células Endoteliales/metabolismo , Transporte de Proteínas , Neuronas/metabolismo , Aparato de Golgi/metabolismo , Acetilgalactosamina/metabolismo
2.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38598324

RESUMEN

Aging affects tissue glycan profiles, which may alter cellular functions and increase the risk of age-related diseases. Glycans are biosynthesized by glycosyltransferases using the corresponding nucleotide sugar, and the availability of nucleotide sugars affects glycosylation efficiency. However, the effects of aging on nucleotide sugar profiles and contents are yet to be elucidated. Therefore, this study aimed to investigate the effects of aging on nucleotide sugars using a new LC-MS/MS method. Specifically, the new method was used to determine the nucleotide sugar contents of various tissues (brain, liver, heart, skeletal muscle, kidney, lung, and colon) of male C57BL/6NCr mice (7- or 26-month-old). Characteristic age-associated nucleotide sugar changes were observed in each tissue sample. Particularly, there was a significant decrease in UDP-glucuronic acid content in the kidney of aged mice and a decrease in the contents of several nucleotide sugars, including UDP-N-acetylgalactosamine, in the brain of aged mice. Additionally, there were variations in nucleotide sugar profiles among the tissues examined regardless of the age. The kidneys had the highest concentration of UDP-glucuronic acid among the seven tissues. In contrast, the skeletal muscle had the lowest concentration of total nucleotide sugars among the tissues; however, CMP-N-acetylneuraminic acid and CDP-ribitol were relatively enriched. Conclusively, these findings may contribute to the understanding of the roles of glycans in tissue aging.


Asunto(s)
Envejecimiento , Ratones Endogámicos C57BL , Nucleótidos , Animales , Ratones , Masculino , Envejecimiento/metabolismo , Nucleótidos/metabolismo , Nucleótidos/análisis , Riñón/metabolismo , Riñón/química , Músculo Esquelético/metabolismo , Músculo Esquelético/química , Espectrometría de Masas en Tándem , Hígado/metabolismo , Hígado/química , Encéfalo/metabolismo
3.
Genes Cells ; 26(7): 485-494, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33893702

RESUMEN

Defects in the O-mannosyl glycan of α-dystroglycan (α-DG) are associated with α-dystroglycanopathy, a group of congenital muscular dystrophies. While α-DG has many O-mannosylation sites, only the specific positions can be modified with the functional O-mannosyl glycan, namely, core M3-type glycan. POMGNT2 is a glycosyltransferase which adds ß1,4-linked GlcNAc to the O-mannose (Man) residue to acquire core M3-type glycan. Although it is assumed that POMGNT2 extends the specific O-Man residues around particular amino acid sequences, the details are not well understood. Here, we determined a series of crystal structures of POMGNT2 with and without the acceptor O-mannosyl peptides and identified the critical interactions between POMGNT2 and the acceptor peptide. POMGNT2 has an N-terminal catalytic domain and a C-terminal fibronectin type III (FnIII) domain and forms a dimer. The acceptor peptide is sandwiched between the two protomers. The catalytic domain of one protomer recognizes the O-mannosylation site (TPT motif), and the FnIII domain of the other protomer recognizes the C-terminal region of the peptide. Structure-based mutational studies confirmed that amino acid residues of the catalytic domain interacting with mannose or the TPT motif are essential for POMGNT2 enzymatic activity. In addition, the FnIII domain is also essential for the activity and it interacts with the peptide mainly by hydrophobic interaction. Our study provides the first atomic-resolution insights into specific acceptor recognition by the FnIII domain of POMGNT2. The catalytic mechanism of POMGNT2 is proposed based on the structure.


Asunto(s)
Dominio Catalítico , Glicosiltransferasas/química , Distroglicanos/metabolismo , Glicosiltransferasas/metabolismo , Humanos , Manosa/metabolismo , Unión Proteica
4.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36361885

RESUMEN

Glycans are involved in many fundamental cellular processes such as growth, differentiation, and morphogenesis. However, their broad structural diversity makes analysis difficult. Glycomics via mass spectrometry has focused on the composition of glycans, but informatics analysis has not kept pace with the development of instrumentation and measurement techniques. We developed Toolbox Accelerating Glycomics (TAG), in which glycans can be added manually to the glycan list that can be freely designed with labels and sialic acid modifications, and fast processing is possible. In the present work, we improved TAG for large-scale analysis such as cohort analysis of serum samples. The sialic acid linkage-specific alkylamidation (SALSA) method converts differences in linkages such as α2,3- and α2,6-linkages of sialic acids into differences in mass. Glycans modified by SALSA and several structures discovered in recent years were added to the glycan list. A routine to generate calibration curves has been implemented to explore quantitation. These improvements are based on redefinitions of residues and glycans in the TAG List to incorporate information on glycans that could not be attributed because it was not assumed in the previous version of TAG. These functions were verified through analysis of purchased sera and 74 spectra with linearity at the level of R2 > 0.8 with 81 estimated glycan structures obtained including some candidate of rare glycans such as those with the N,N'-diacetyllactosediamine structure, suggesting they can be applied to large-scale analyses.


Asunto(s)
Glicómica , Ácido N-Acetilneuramínico , Humanos , Glicómica/métodos , Polisacáridos/química , Ácidos Siálicos/química , Espectrometría de Masas
5.
Molecules ; 26(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34771084

RESUMEN

Bacteria contain glycerol phosphate (GroP)-containing glycans, which are important constituents of cell-surface glycopolymers such as the teichoic acids of Gram-positive bacterial cell walls. These glycopolymers comprising GroP play crucial roles in bacterial physiology and virulence. Recently, the first identification of a GroP-containing glycan in mammals was reported as a variant form of O-mannosyl glycan on α-dystroglycan (α-DG). However, the biological significance of such GroP modification remains largely unknown. In this review, we provide an overview of this new discovery of GroP-containing glycan in mammals and then outline the recent progress in elucidating the biosynthetic mechanisms of GroP-containing glycans on α-DG. In addition, we discuss the potential biological role of GroP modification along with the challenges and prospects for further research. The progress in this newly identified glycan modification will provide insights into the phylogenetic implications of glycan.


Asunto(s)
Glicerofosfatos/metabolismo , Polisacáridos/biosíntesis , Animales , Vías Biosintéticas , Distroglicanos/química , Distroglicanos/metabolismo , Matriz Extracelular/metabolismo , Glicerofosfatos/química , Glicosilación , Humanos , Laminina/metabolismo , Mamíferos , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Polisacáridos/química , Unión Proteica , Relación Estructura-Actividad
6.
Anal Chem ; 92(21): 14383-14392, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32881480

RESUMEN

Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.

7.
Biochim Biophys Acta Mol Cell Res ; 1865(6): 874-888, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29567213

RESUMEN

Macrophages secrete endoplasmic reticulum aminopeptidase 1 (ERAP1) in response to lipopolysaccharide (LPS) and interferon (IFN)-γ to enhance their phagocytic and nitric oxide (NO) synthetic activities. In this study, we found that a subset of secreted ERAP1 bound to exosomes released from LPS/IFN-γ-treated murine RAW264.7 macrophages compared to untreated cells. ERAP1-bound exosomes enhanced phagocytic and NO synthetic activities of macrophages more efficiently than free ERAP1 and exosomes derived from untreated cells. Deletion of the exon 10 coding sequence in ERAP1 gene resulted in loss of binding to exosomes. By comparing the activities of exosomes derived from wild-type and ERAP1 gene-deficient RAW264.7 cells, we observed that ERAP1 contributed to the exosome-dependent phagocytosis and NO synthesis of the cells. Upon stimulation of RAW264.7 cells with LPS/IFN-γ, TNF-α, IFN-γ, and CCL3 were also associated with the released exosomes. Analyses of cytokine function revealed that while CCL3 in the exosomes was crucial to the phagocytic activity of RAW264.7 cells, TNF-α and IFN-γ primarily contributed to the enhancement of NO synthesis. These results suggest that treatment with LPS/IFN-γ alters the physicochemical properties of exosomes released from macrophages in order to facilitate association with ERAP1 and several cytokines/chemokines. This leads to exosome-mediated enhancement of macrophage functions. It is possible that packaging effector molecules into exosomes upon inflammatory stimuli, facilitates the exertion of effective pathophysiological functions on macrophages. Our data provide the first evidence that ERAP1 associated with exosomes plays important roles in inflammatory processes via activation of macrophages.


Asunto(s)
Aminopeptidasas/metabolismo , Exosomas/metabolismo , Activación de Macrófagos , Macrófagos/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Aminopeptidasas/genética , Animales , Citocinas/genética , Citocinas/metabolismo , Exosomas/genética , Inflamación/genética , Inflamación/metabolismo , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor/genética , Fagocitosis , Células RAW 264.7
8.
J Biol Chem ; 293(31): 12186-12198, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29884773

RESUMEN

α-Dystroglycan (α-DG) is a highly glycosylated cell-surface laminin receptor. Defects in the O-mannosyl glycan of an α-DG with laminin-binding activity can cause α-dystroglycanopathy, a group of congenital muscular dystrophies. In the biosynthetic pathway of functional O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP), whose mutated genes underlie α-dystroglycanopathy, sequentially transfer ribitol phosphate (RboP) from CDP-Rbo to form a tandem RboP unit (RboP-RboP) required for the synthesis of the laminin-binding epitope on O-mannosyl glycan. Both RboP- and glycerol phosphate (GroP)-substituted glycoforms have recently been detected in recombinant α-DG. However, it is unclear how GroP is transferred to the O-mannosyl glycan or whether GroP substitution affects the synthesis of the O-mannosyl glycan. Here, we report that, in addition to having RboP transfer activity, FKTN and FKRP can transfer GroP to O-mannosyl glycans by using CDP-glycerol (CDP-Gro) as a donor substrate. Kinetic experiments indicated that CDP-Gro is a less efficient donor substrate for FKTN than is CDP-Rbo. We also show that the GroP-substituted glycoform synthesized by FKTN does not serve as an acceptor substrate for FKRP and that therefore further elongation of the outer glycan chain cannot occur with this glycoform. Finally, CDP-Gro inhibited the RboP transfer activities of both FKTN and FKRP. These results suggest that CDP-Gro inhibits the synthesis of the functional O-mannosyl glycan of α-DG by preventing further elongation of the glycan chain. This is the first report of GroP transferases in mammals.


Asunto(s)
Distroglicanos/metabolismo , Glicerol/metabolismo , Distrofias Musculares/metabolismo , Polisacáridos/metabolismo , Glicerol/química , Glicosilación , Humanos , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Distrofias Musculares/genética , Pentosafosfatos/metabolismo , Pentosiltransferasa , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
9.
Am J Physiol Renal Physiol ; 317(5): F1359-F1374, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31566433

RESUMEN

The function of actin is regulated by various posttranslational modifications. We have previously shown that in the kidneys of nonobese type 2 diabetes model Goto-Kakizaki rats, increased O-GlcNAcylation of ß-actin protein is observed. It has also been reported that both O-GlcNAcylation and phosphorylation occur on Ser199 of ß-actin. However, their roles are not known. To elucidate their roles in diabetic nephropathy, we examined the rat kidney for changes in O-GlcNAcylation of Ser199 (gS199)-actin and in the phosphorylation of Ser199 (pS199)-actin. Both gS199- and pS199-actin molecules had an apparent molecular weight of 40 kDa and were localized as nonfilamentous actin in both the cytoplasm and nucleus. Compared with the normal kidney, the immunostaining intensity of gS199-actin increased in podocytes of the glomeruli and in proximal tubules of the diabetic kidney, whereas that of pS199-actin did not change in podocytes but decreased in proximal tubules. We confirmed that the same results could be observed in the glomeruli of the human diabetic kidney. In podocytes of glomeruli cultured in the presence of the O-GlcNAcase inhibitor Thiamet G, increased O-GlcNAcylation was accompanied by a concomitant decrease in the amount of filamentous actin and in morphological changes. Our present results demonstrate that dysregulation of O-GlcNAcylation and phosphorylation of Ser199 occurred in diabetes, which may contribute partially to the causes of the morphological changes in the glomeruli and tubules. gS199- and pS199-actin will thus be useful for the pathological evaluation of diabetic nephropathy.


Asunto(s)
Actinas/metabolismo , Nefropatías Diabéticas/metabolismo , Acilación , Secuencia de Aminoácidos , Animales , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas/patología , Humanos , Riñón/metabolismo , Riñón/patología , Masculino , Modelos Moleculares , Fosforilación , Podocitos/metabolismo , Conformación Proteica , Ratas , Ratas Endogámicas
10.
Arch Biochem Biophys ; 678: 108167, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31704098

RESUMEN

The Goto-Kakizaki (GK) rat is a spontaneous animal model of type 2 diabetes and early stage of diabetic nephropathy. However, the pathophysiological mechanisms contributing to the progression of diabetic nephropathy in GK rats remain unclear. Kidneys from 15-week old male diabetic GK/Jcl rats and age-matched Wistar rats, which have the same genetic background as GK rats, were used. Proteomic analyses of GK and Wistar kidneys were performed using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Differentially expressed proteins in GK rats were subjected to pathway analysis, and expression levels of hypoxia inducible factor 1α (HIF-1α) and transforming growth factor-ß1 (TGF-ß1), and fumarate accumulation in GK kidneys were examined. Azan staining and immunohistochemical staining of α-smooth muscle actin were performed in relation to fibrosis in GK kidneys. Proteomic analysis using 2D-DIGE, analysis of fumarate content, and expression analysis of HIF-1α, TGF-ß1, and α-smooth muscle actin of GK rat's kidney, suggested the mechanism of fibrosis characterized as two stages in diabetic nephropathy of GK rats. Abnormalities of glucose metabolism such as elevated levels of 2-oxoglutarate dehydrogenase and reduction of fumarate hydratase caused the accumulation of fumarate followed by the upregulation of HIF-1α and TGF-ß1 leading to fibrosis in diabetic nephropathy. Alterations in proteins involved in the tricarboxylic acid cycle are associated with fibrosis through fumarate accumulation in diabetic nephropathy of GK rats.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Fumaratos/metabolismo , Riñón/patología , Animales , Ciclo del Ácido Cítrico , Regulación hacia Abajo , Fibrosis , Masculino , Ratas
11.
Proc Natl Acad Sci U S A ; 113(33): 9280-5, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27493216

RESUMEN

The dystrophin glycoprotein complex, which connects the cell membrane to the basement membrane, is essential for a variety of biological events, including maintenance of muscle integrity. An O-mannose-type GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man structure of α-dystroglycan (α-DG), a subunit of the complex that is anchored to the cell membrane, interacts directly with laminin in the basement membrane. Reduced glycosylation of α-DG is linked to some types of inherited muscular dystrophy; consistent with this relationship, many disease-related mutations have been detected in genes involved in O-mannosyl glycan synthesis. Defects in protein O-linked mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGnT1), a glycosyltransferase that participates in the formation of GlcNAc-ß1,2-Man glycan, are causally related to muscle-eye-brain disease (MEB), a congenital muscular dystrophy, although the role of POMGnT1 in postphosphoryl modification of GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man glycan remains elusive. Our crystal structures of POMGnT1 agreed with our previous results showing that the catalytic domain recognizes substrate O-mannosylated proteins via hydrophobic interactions with little sequence specificity. Unexpectedly, we found that the stem domain recognizes the ß-linked GlcNAc of O-mannosyl glycan, an enzymatic product of POMGnT1. This interaction may recruit POMGnT1 to a specific site of α-DG to promote GlcNAc-ß1,2-Man clustering and also may recruit other enzymes that interact with POMGnT1, e.g., fukutin, which is required for further modification of the GalNAc-ß1,3-GlcNAc-ß1,4-(phosphate-6)-Man glycan. On the basis of our findings, we propose a mechanism for the deficiency in postphosphoryl modification of the glycan observed in POMGnT1-KO mice and MEB patients.


Asunto(s)
Distroglicanos/química , N-Acetilglucosaminiltransferasas/química , Sitios de Unión , Cristalización , Glicosilación , Humanos , Manosa/química
12.
Artículo en Inglés | MEDLINE | ID: mdl-30643095

RESUMEN

Glycosylation is an important posttranslational modification in mammals. The glycans of glycoproteins are classified into two groups, namely, N-glycans and O-glycans, according to their glycan-peptide linkage regions. Recently, O-mannosyl glycan, an O-glycan, has been shown to be important in muscle and brain development. A clear relationship between O-mannosyl glycans and the pathomechanisms of some congenital muscular dystrophies has been established in humans. Ribitol-5-phosphate is a newly identified glycan component in mammals, and its biosynthetic pathway has been elucidated. The discovery of new glycan structures and the identification of highly regulated mechanisms of glycan processing will help researchers to understand glycan functions and develop therapeutic strategies.


Asunto(s)
Enfermedad , Manosa/química , Polisacáridos/química , Polisacáridos/metabolismo , Animales , Glicosilación , Humanos , Mamíferos , Polisacáridos/biosíntesis
13.
Hum Mol Genet ; 25(8): 1479-88, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26908613

RESUMEN

A growing number of human diseases have been linked to defects in protein glycosylation that affects a wide range of organs. Among them, O-mannosylation is an unusual type of protein glycosylation that is largely restricted to the muscular and nerve system. Consistently, mutations in genes involved in the O-mannosylation pathway result in infantile-onset, severe developmental defects involving skeleton muscle, brain and eye, such as the muscle-eye-brain disease (MIM no. 253280). However, the functional importance of O-mannosylation in these tissues at later stages remains largely unknown. In our study, we have identified recessive mutations in POMGNT1, which encodes an essential component in O-mannosylation pathway, in three unrelated families with autosomal recessive retinitis pigmentosa (RP), but without extraocular involvement. Enzymatic assay of these mutant alleles demonstrate that they greatly reduce the POMGNT1 enzymatic activity and are likely to be hypomorphic. Immunohistochemistry shows that POMGNT1 is specifically expressed in photoreceptor basal body. Taken together, our work identifies a novel disease-causing gene for RP and indicates that proper protein O-mannosylation is not only essential for early organ development, but also important for maintaining survival and function of the highly specialized retinal cells at later stages.


Asunto(s)
Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Retinitis Pigmentosa/patología , Análisis de Secuencia de ADN/métodos , Adulto , Anciano , Animales , Células Cultivadas , Exoma , Femenino , Genes Recesivos , Predisposición Genética a la Enfermedad , Glicosilación , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje , Células Fotorreceptoras de Vertebrados/metabolismo , Retinitis Pigmentosa/genética
14.
Biochem Biophys Res Commun ; 497(4): 1025-1030, 2018 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-29477842

RESUMEN

Dystroglycanopathies are a group of muscular dystrophies that are caused by abnormal glycosylation of dystroglycan; currently 18 causative genes are known. Functions of the dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and transmembrane protein 5 (TMEM5) were most recently identified; fukutin and FKRP are ribitol-phosphate transferases and TMEM5 is a ribitol xylosyltransferase. In this study, we show that fukutin, FKRP, and TMEM5 form a complex while maintaining each of their enzyme activities. Immunoprecipitation and immunofluorescence experiments demonstrated protein interactions between these 3 proteins. A protein complex consisting of endogenous fukutin and FKRP, and exogenously expressed TMEM5 exerts activities of each enzyme. Our data showed for the first time that endogenous fukutin and FKRP enzyme activities coexist with TMEM5 enzyme activity, and suggest the possibility that formation of this enzyme complex may contribute to specific and prompt biosynthesis of glycans that are required for dystroglycan function.


Asunto(s)
Proteínas de la Membrana/metabolismo , Distrofias Musculares/metabolismo , Proteínas/metabolismo , Distroglicanos , Células HEK293 , Humanos , Complejos Multiproteicos , Pentosiltransferasa , Polisacáridos/biosíntesis , Ribitol/metabolismo
15.
Genes Cells ; 22(4): 348-359, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28251761

RESUMEN

Orchestration of the multiple enzymes engaged in O-mannose glycan synthesis provides a matriglycan on α-dystroglycan (α-DG) which attracts extracellular matrix (ECM) proteins such as laminin. Aberrant O-mannosylation of α-DG leads to severe congenital muscular dystrophies due to detachment of ECM proteins from the basal membrane. Phosphorylation at C6-position of O-mannose catalyzed by protein O-mannosyl kinase (POMK) is a crucial step in the biosynthetic pathway of O-mannose glycan. Several mis-sense mutations of the POMK catalytic domain are known to cause a severe congenital muscular dystrophy, Walker-Warburg syndrome. Due to the low sequence similarity with other typical kinases, structure-activity relationships of this enzyme remain unclear. Here, we report the crystal structures of the POMK catalytic domain in the absence and presence of an ATP analogue and O-mannosylated glycopeptide. The POMK catalytic domain shows a typical protein kinase fold consisting of N- and C-lobes. Mannose residue binds to POMK mainly via the hydroxyl group at C2-position, differentiating from other monosaccharide residues. Intriguingly, the two amino acid residues K92 and D228, interacting with the triphosphate group of ATP, are donated from atypical positions in the primary structure. Mutations in this protein causing muscular dystrophies can now be rationalized.


Asunto(s)
Proteínas Quinasas/química , Animales , Dominio Catalítico , Cristalografía por Rayos X , Distroglicanos/química , Humanos , Ratones , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mutación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo
16.
Biochim Biophys Acta Gen Subj ; 1862(6): 1462-1471, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29580922

RESUMEN

BACKGROUND: Glycosylation is highly susceptible to changes of the physiological conditions, and accordingly, is a potential biomarker associated with several diseases and/or longevity. Semi-supercentenarians (SSCs; older than 105 years) are thought to be a model of human longevity. Thus, we performed glycoproteomics using plasma samples of SSCs, and identified proteins and conjugated N-glycans that are characteristic of extreme human longevity. METHODS: Plasma proteins from Japanese semi-supercentenarians (SSCs, 106-109 years), aged controls (70-88 years), and young controls (20-38 years) were analysed by using lectin microarrays and liquid chromatography/mass spectrometry (LC/MS). Peak area ratios of glycopeptides to corresponding normalising peptides were subjected to orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, plasma levels of clinical biomarkers were measured. RESULTS: We found two lectins such as Phaseolus vulgaris, and Erythrina cristagalli (ECA), of which protein binding were characteristically increased in SSCs. Peak area ratios of ECA-enriched glycopeptides were successfully discriminated between SSCs and controls using OPLS-DA, and indicated that tri-antennary and sialylated N-glycans of haptoglobin at Asn207 and Asn211 sites were characterized in SSCs. Sialylated glycans of haptoglobin are a potential biomarker of several diseases, such as hepatocellular carcinoma, liver cirrhosis, and IgA-nephritis. However, the SSCs analysed here did not suffer from these diseases. CONCLUSIONS: Tri-antennary and sialylated N-glycans on haptoglobin at the Asn207 and Asn211 sites were abundant in SSCs and characteristic of extreme human longevity. GENERAL SIGNIFICANCE: We found abundant glycans in SSCs, which may be associated with human longevity.


Asunto(s)
Biomarcadores/sangre , Proteínas Sanguíneas/metabolismo , Glicopéptidos/sangre , Glicoproteínas/sangre , Longevidad/fisiología , Polisacáridos/sangre , Proteómica/métodos , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Femenino , Glicosilación , Humanos , Adulto Joven
17.
J Biol Chem ; 291(47): 24618-24627, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27733679

RESUMEN

A defect in O-mannosyl glycan is the cause of α-dystroglycanopathy, a group of congenital muscular dystrophies caused by aberrant α-dystroglycan (α-DG) glycosylation. Recently, the entire structure of O-mannosyl glycan, [3GlcAß1-3Xylα1]n-3GlcAß1-4Xyl-Rbo5P-1Rbo5P-3GalNAcß1-3GlcNAcß1-4 (phospho-6)Manα1-, which is required for the binding of α-DG to extracellular matrix ligands, has been proposed. However, the linkage of the first Xyl residue to ribitol 5-phosphate (Rbo5P) is not clear. TMEM5 is a gene product responsible for α-dystroglycanopathy and was reported as a potential enzyme involved in this linkage formation, although the experimental evidence is still incomplete. Here, we report that TMEM5 is a xylosyltransferase that forms the Xylß1-4Rbo5P linkage on O-mannosyl glycan. The anomeric configuration and linkage position of the product (ß1,4 linkage) was determined by NMR analysis. The introduction of two missense mutations in TMEM5 found in α-dystroglycanopathy patients impaired xylosyltransferase activity. Furthermore, the disruption of the TMEM5 gene by CRISPR/Cas9 abrogated the elongation of the (-3GlcAß1-3Xylα1-) unit on O-mannosyl glycan. Based on these results, we concluded that TMEM5 acts as a UDP-d-xylose:ribitol-5-phosphate ß1,4-xylosyltransferase in the biosynthetic pathway of O-mannosyl glycan.


Asunto(s)
Distroglicanos/metabolismo , Proteínas de la Membrana/metabolismo , Distrofias Musculares/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Línea Celular , Distroglicanos/química , Distroglicanos/genética , Glicosilación , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Distrofias Musculares/genética , Mutación Missense , Resonancia Magnética Nuclear Biomolecular , Pentosiltransferasa , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
18.
Biochim Biophys Acta ; 1860(8): 1608-14, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26801879

RESUMEN

BACKGROUND: Since glycosylation depends on glycosyltransferases, glycosidases, and sugar nucleotide donors, it is susceptible to the changes associated with physiological and pathological conditions. Therefore, alterations in glycan structures may be good targets and biomarkers for monitoring health conditions. Since human aging and longevity are affected by genetic and environmental factors such as diseases, lifestyle, and social factors, a scale that reflects various environmental factors is required in the study of human aging and longevity. SCOPE OF REVIEW: We herein focus on glycosylation changes elucidated by glycomic and glycoproteomic studies on aging, longevity, and age-related diseases including cognitive impairment, diabetes mellitus, and frailty. We also consider the potential of glycan structures as biomarkers and/or targets for monitoring physiological and pathophysiological changes. MAJOR CONCLUSIONS: Glycan structures are altered in age-related diseases. These glycans and glycoproteins may be involved in the pathophysiology of these diseases and, thus, be useful diagnostic markers. Age-dependent changes in N-glycans have been reported previously in cohort studies, and characteristic N-glycans in extreme longevity have been proposed. These findings may lead to a deeper understanding of the mechanisms underlying aging as well as the factors influencing longevity. GENERAL SIGNIFICANCE: Alterations in glycosylation may be good targets and biomarkers for monitoring health conditions, and be applicable to studies on age-related diseases and healthy aging. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.


Asunto(s)
Trastornos del Conocimiento , Diabetes Mellitus , Glicómica/métodos , Longevidad , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Animales , Biomarcadores/metabolismo , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/terapia , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Anciano Frágil , Glicosilación , Humanos
19.
Biochim Biophys Acta Gen Subj ; 1861(10): 2462-2472, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28711406

RESUMEN

BACKGROUND: O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. SCOPE OF REVIEW: This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. MAJOR CONCLUSIONS: Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. GENERAL SIGNIFICANCE: O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Asunto(s)
Distroglicanos/química , Distrofias Musculares/metabolismo , N-Acetilglucosaminiltransferasas/química , Pentosafosfatos/metabolismo , Procesamiento Proteico-Postraduccional , Síndrome de Walker-Warburg/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Secuencia de Carbohidratos , Distroglicanos/genética , Distroglicanos/metabolismo , Glicosilación , Humanos , Manosa/química , Manosa/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/genética , Distrofias Musculares/patología , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Pentosafosfatos/química , Polisacáridos/química , Polisacáridos/metabolismo , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patología
20.
Bioorg Med Chem Lett ; 27(22): 5022-5026, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29029932

RESUMEN

Protein O-GlcNAcylation regulates various biological processes, and is associated with several diseases. Therefore, the development of quantitative proteomics is important for understanding the mechanisms of O-GlcNAc-related diseases. We previously reported selective enrichment of O-GlcNAcylated peptides, which provided high-selectivity and effective release by a novel thiol-alkyne and thiol-disulfide exchange. Here, we describe a new approach using initial isobaric tag labeling for relative quantification followed by enrichment and ß-elimination/Michael addition with dithiothreitol for identification of both proteins and modification sites. The approach was validated using model proteins and peptides. This novel strategy could be used for quantitative O-GlcNAcome of biological samples.


Asunto(s)
Acetilglucosamina/análisis , Péptidos/análisis , Proteómica , Acetilglucosamina/metabolismo , Alquinos/química , Animales , Bovinos , Cromatografía Líquida de Alta Presión , Cristalinas/química , Cristalinas/metabolismo , Disulfuros/química , Glicosilación , Péptidos/química , Péptidos/metabolismo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA