Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 40(24): e105862, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34786738

RESUMEN

The onset of random X chromosome inactivation in mouse requires the switch from a symmetric to an asymmetric state, where the identities of the future inactive and active X chromosomes are assigned. This process is known as X chromosome choice. Here, we show that RIF1 and KAP1 are two fundamental factors for the definition of this transcriptional asymmetry. We found that at the onset of differentiation of mouse embryonic stem cells (mESCs), biallelic up-regulation of the long non-coding RNA Tsix weakens the symmetric association of RIF1 with the Xist promoter. The Xist allele maintaining the association with RIF1 goes on to up-regulate Xist RNA expression in a RIF1-dependent manner. Conversely, the promoter that loses RIF1 gains binding of KAP1, and KAP1 is required for the increase in Tsix levels preceding the choice. We propose that the mutual exclusion of Tsix and RIF1, and of RIF1 and KAP1, at the Xist promoters establish a self-sustaining loop that transforms an initially stochastic event into a stably inherited asymmetric X-chromosome state.


Asunto(s)
Células Madre Embrionarias de Ratones/citología , ARN Largo no Codificante/genética , Proteínas de Unión a Telómeros/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Diferenciación Celular , Línea Celular , Femenino , Ratones , Regiones Promotoras Genéticas , Procesos Estocásticos , Regulación hacia Arriba , Inactivación del Cromosoma X
2.
PLoS Genet ; 9(1): e1003158, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326240

RESUMEN

Genome integrity depends on correct chromosome segregation, which in turn relies on cohesion between sister chromatids from S phase until anaphase. S phase cohesion, together with DNA double-strand break (DSB) recruitment of cohesin and formation of damage-induced (DI) cohesion, has previously been shown to be required also for efficient postreplicative DSB repair. The budding yeast acetyltransferase Eco1 (Ctf7) is a common essential factor for S phase and DI-cohesion. The fission yeast Eco1 ortholog, Eso1, is expressed as a fusion protein with the translesion synthesis (TLS) polymerase Polη. The involvement of Eso1 in S phase cohesion was attributed to the Eco1 homologous part of the protein and bypass of UV-induced DNA lesions to the Polη part. Here we describe an additional novel function for budding yeast Polη, i.e. formation of postreplicative DI genome-wide cohesion. This is a unique Polη function not shared with other TLS polymerases. However, Polη deficient cells are DSB repair competent, as Polη is not required for cohesion locally at the DSB. This reveals differential regulation of DSB-proximal cohesion and DI genome-wide cohesion, and challenges the importance of the latter for DSB repair. Intriguingly, we found that specific inactivation of DI genome-wide cohesion increases chromosomal mis-segregation at the entrance of the next cell cycle, suggesting that S phase cohesion is not sufficient for correct chromosome segregation in the presence of DNA damage.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN , Genoma Fúngico , Saccharomyces cerevisiae , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Anafase/genética , Rotura Cromosómica/efectos de la radiación , Segregación Cromosómica/genética , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Intercambio de Cromátides Hermanas , Rayos Ultravioleta
3.
Nat Commun ; 12(1): 2910, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006872

RESUMEN

Three-dimensional genome organisation and replication timing are known to be correlated, however, it remains unknown whether nuclear architecture overall plays an instructive role in the replication-timing programme and, if so, how. Here we demonstrate that RIF1 is a molecular hub that co-regulates both processes. Both nuclear organisation and replication timing depend upon the interaction between RIF1 and PP1. However, whereas nuclear architecture requires the full complement of RIF1 and its interaction with PP1, replication timing is not sensitive to RIF1 dosage. The role of RIF1 in replication timing also extends beyond its interaction with PP1. Availing of this separation-of-function approach, we have therefore identified in RIF1 dual function the molecular bases of the co-dependency of the replication-timing programme and nuclear architecture.


Asunto(s)
Núcleo Celular/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias de Ratones/metabolismo , Proteína Fosfatasa 1/genética , Proteínas de Unión a Telómeros/genética , Animales , Ciclo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Expresión Génica , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Unión Proteica , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión a Telómeros/metabolismo
4.
Genetics ; 216(4): 1009-1022, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33033113

RESUMEN

Double-strand breaks that are induced postreplication trigger establishment of damage-induced cohesion in Saccharomyces cerevisiae, locally at the break site and genome-wide on undamaged chromosomes. The translesion synthesis polymerase, polymerase η, is required for generation of damage-induced cohesion genome-wide. However, its precise role and regulation in this process is unclear. Here, we investigated the possibility that the cyclin-dependent kinase Cdc28 and the acetyltransferase Eco1 modulate polymerase η activity. Through in vitro phosphorylation and structure modeling, we showed that polymerase η is an attractive substrate for Cdc28 Mutation of the putative Cdc28-phosphorylation site Ser14 to Ala not only affected polymerase η protein level, but also prevented generation of damage-induced cohesion in vivo We also demonstrated that Eco1 acetylated polymerase η in vitro Certain nonacetylatable polymerase η mutants showed reduced protein level, deficient nuclear accumulation, and increased ultraviolet irradiation sensitivity. In addition, we found that both Eco1 and subunits of the cohesin network are required for cell survival after ultraviolet irradiation. Our findings support functionally important Cdc28-mediated phosphorylation, as well as post-translational modifications of multiple lysine residues that modulate polymerase η activity, and provide new insights into understanding the regulation of polymerase η for damage-induced cohesion.


Asunto(s)
Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Procesamiento Proteico-Postraduccional , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Sci Rep ; 7(1): 2119, 2017 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-28522851

RESUMEN

Rif1 is a conserved protein that plays essential roles in orchestrating DNA replication timing, controlling nuclear architecture, telomere length and DNA repair. However, the relationship between these different roles, as well as the molecular basis of Rif1 function is still unclear. The association of Rif1 with insoluble nuclear lamina has thus far hampered exhaustive characterization of the associated protein complexes. We devised a protocol that overcomes this problem, and were thus able to discover a number of novel Rif1 interactors, involved in chromatin metabolism and phosphorylation. Among them, we focus here on PP1. Data from different systems have suggested that Rif1-PP1 interaction is conserved and has important biological roles. Using mutagenesis, NMR, isothermal calorimetry and surface plasmon resonance we demonstrate that Rif1 is a high-affinity PP1 adaptor, able to out-compete the well-established PP1-inhibitor I2 in vitro. Our conclusions have important implications for understanding Rif1 diverse roles and the relationship between the biological processes controlled by Rif1.


Asunto(s)
Proteínas de Unión a Telómeros/química , Animales , Sitios de Unión , Línea Celular , Ratones , Mutación Puntual , Unión Proteica , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
6.
J Exp Med ; 210(12): 2503-13, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24145515

RESUMEN

DNA double strand breaks (DSBs) are mainly repaired via homologous recombination (HR) or nonhomologous end joining (NHEJ). These breaks pose severe threats to genome integrity but can also be necessary intermediates of normal cellular processes such as immunoglobulin class switch recombination (CSR). During CSR, DSBs are produced in the G1 phase of the cell cycle and are repaired by the classical NHEJ machinery. By studying B lymphocytes derived from patients with Cornelia de Lange Syndrome, we observed a strong correlation between heterozygous loss-of-function mutations in the gene encoding the cohesin loading protein NIPBL and a shift toward the use of an alternative, microhomology-based end joining during CSR. Furthermore, the early recruitment of 53BP1 to DSBs was reduced in the NIPBL-deficient patient cells. Association of NIPBL deficiency and impaired NHEJ was also observed in a plasmid-based end-joining assay and a yeast model system. Our results suggest that NIPBL plays an important and evolutionarily conserved role in NHEJ, in addition to its canonical function in sister chromatid cohesion and its recently suggested function in HR.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Reparación del ADN por Unión de Extremidades , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/inmunología , Cambio de Clase de Inmunoglobulina , Proteínas/metabolismo , Adolescente , Linfocitos B/inmunología , Linfocitos B/metabolismo , Secuencia de Bases , Estudios de Casos y Controles , Línea Celular , Niño , Preescolar , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Síndrome de Cornelia de Lange/metabolismo , Heterocigoto , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Cohesinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA