Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36987127

RESUMEN

The construction of ballistic-resistant body armor is experiencing an increasing use of flexible unidirectional (UD) composite laminates that comprise multiple layers. Each UD layer contains hexagonally packed high-performance fibers with a very low modulus matrix (sometimes referred to as binder resins). Laminates are then made from orthogonal stacks of these layers, and these laminate-based armor packages offer significant performance advantages over standard woven materials. When designing any armor system, the long-term reliability of the armor materials is critical, particularly with regard to stability with exposure to temperature and humidity, as these are known causes of degradation in commonly used body armor materials. To better inform future armor designers, this work investigates the tensile behavior of an ultra-high molar mass polyethylene (UHMMPE) flexible UD laminate that was aged for at least 350 d at two accelerated conditions: 70 °C at 76% relative humidity (RH) and 70 °C in a desiccator. Tensile tests were performed at two different loading rates. The mechanical properties of the material after ageing demonstrated less than 10% degradation in tensile strength, indicating high reliability for armor made from this material.

2.
J Mater Sci ; 55(3)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041370

RESUMEN

Flexible Unidirectional (UD) composite laminates are commonly being used for ballistic-resistant body armor. These laminates comprise UD layers, each constructed by laminating thin layers of high-performance fibers held in place using very low modulus binder resins, with the fibers in each layer oriented parallel to each other. As these materials are used in body armor, it is important to investigate their long-term reliability, particularly with regards to exposure to temperature and humidity as these are known causes of degradation in other commonly used body armor materials. This work investigates the tensile behavior of a poly(p-phenylene terephthalamide), or PPTA flexible UD laminate aged for up to 150 d at accelerated conditions of 70 °C and 76 % relative humidity (RH). Tests were performed at three different crosshead displacement rates and three different gauge lengths. The effect of ageing on the mechanical properties of the material resulted in less than 10 % degradation in tensile strength, with a more significant reduction in longer specimens when tested at slower rates.

3.
SN Appl Sci ; 2(4)2020.
Artículo en Inglés | MEDLINE | ID: mdl-33043248

RESUMEN

Soft body armor is typically comprised of materials such as aramid. Recently, copolymer fibers based on the combination of 5-amino-2-(p-aminophenyl) benzimidazole (PBIA) and PPTA were introduced to the body armor marketplace. The long-term stability of these copolymer fibers have not been the subject of much research, however they may be sensitive to hydrolysis due to elevated humidity because they are condensation polymers. Efforts to evaluate the impact of environmental conditions on fiber strength is very important for the adoption of these materials in armor systems. Three PBIA-based fibers were selected for the study, and were aged at 25 °C, 75 % RH; 43 °C, 41 % RH; 55 °C, 60 % RH; and 70 °C, 76 % RH for up to 524 d. Molecular spectroscopy, scanning electron microscopy, and single fiber tensile testing were performed to characterize changes in their chemical structure, tensile strength, and failure strain as a function of exposure time to different conditions. The fibers were all found to have some reduction in strength at high humidity conditions, with an approximately 14 % reduction for the copolymers and a 29 % reduction for the homopolymer. Molecular spectroscopy revealed some changes which suggest that hydrolysis of the benzimidazole ring is occurring at these elevated temperatures, possibly explaining the observed change in strength.

4.
J Vis Exp ; (146)2019 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-31081808

RESUMEN

Many body armor designs incorporate unidirectional (UD) laminates. UD laminates are constructed of thin (<0.05 mm) layers of high-performance yarns, where the yarns in each layer are oriented parallel to each other and held in place using binder resins and thin polymer films. The armor is constructed by stacking the unidirectional layers in different orientations. To date, only very preliminary work has been performed to characterize the ageing of the binder resins used in unidirectional laminates and the effects on their performance. For example, during the development of the conditioning protocol used in the National Institute of Justice Standard-0101.06, UD laminates showed visual signs of delamination and reductions in V50, which is the velocity at which half of the projectiles are expected to perforate the armor, after ageing. A better understanding of the material property changes in UD laminates is necessary to comprehend the long-term performance of armors constructed from these materials. There are no current standards recommended for mechanically interrogating unidirectional (UD) laminate materials. This study explores methods and best practices for accurately testing the mechanical properties of these materials and proposes a new test methodology for these materials. Best practices for ageing these materials are also described.


Asunto(s)
Ensayo de Materiales , Polímeros/química , Estrés Mecánico , Resistencia a la Tracción
5.
J Vis Exp ; (139)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30222168

RESUMEN

Traditionally, soft body armor has been made from poly(p-phenylene terephthalamide) (PPTA) and ultra-high molecular weight polyethylene. However, to diversify the fiber choices in the United States body armor market, copolymer fibers based on the combination of 5-amino-2-(p-aminophenyl) benzimidazole (PBIA) and the more conventional PPTA were introduced. Little is known regarding the long-term stability of these fibers, but as condensation polymers, they are expected to have potential sensitivity to moisture and humidity. Therefore, characterizing the strength of the materials and understanding their vulnerability to environmental conditions is important for evaluating their use lifetime in safety applications. Ballistic resistance and other critical structural properties of these fibers are predicated on their strength. To accurately determine the strength of the individual fibers, it is necessary to disentangle them from the yarn without introducing any damage. Three aramid-based copolymer fibers were selected for the study. The fibers were washed with acetone followed by methanol to remove an organic coating that held the individual fibers in each yarn bundle together. This coating makes it difficult to separate single fibers from the yarn bundle for mechanical testing without damaging the fibers and affecting their strength. After washing, fourier transform infrared (FTIR) spectroscopy was performed on both washed and unwashed samples and the results were compared. This experiment has shown that there are no significant variations in the spectra of poly(p-phenylene-benzimidazole-terephthalamide-co-p-phenylene terephthalamide) (PBIA-co-PPTA1) and PBIA-co-PPTA3 after washing, and only a small variation in intensity for PBIA. This indicates that the acetone and methanol rinses are not adversely affecting the fibers and causing chemical degradation. Additionally, single fiber tensile testing was performed on the washed fibers to characterize their initial tensile strength and strain to failure, and compare those to other reported values. Iterative procedural development was necessary to find a successful method for performing tensile testing on these fibers.


Asunto(s)
Ensayo de Materiales/métodos , Polímeros/química , Resistencia a la Tracción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA