Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Mol Genet ; 23(3): 717-29, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24070868

RESUMEN

Activation of caspase-6 in the striatum of both presymptomatic and affected persons with Huntington's disease (HD) is an early event in the disease pathogenesis. However, little is known about the role of caspase-6 outside the central nervous system (CNS) and whether caspase activation might play a role in the peripheral phenotypes, such as muscle wasting observed in HD. We assessed skeletal muscle tissue from HD patients and well-characterized mouse models of HD. Cleavage of the caspase-6 specific substrate lamin A is significantly increased in skeletal muscle obtained from HD patients as well as in muscle tissues from two different HD mouse models. p53, a transcriptional activator of caspase-6, is upregulated in neuronal cells and tissues expressing mutant huntingtin. Activation of p53 leads to a dramatic increase in levels of caspase-6 mRNA, caspase-6 activity and cleavage of lamin A. Using mouse embryonic fibroblasts (MEFs) from YAC128 mice, we show that this increase in caspase-6 activity can be mitigated by pifithrin-α (pifα), an inhibitor of p53 transcriptional activity, but not through the inhibition of p53's mitochondrial pro-apoptotic function. Remarkably, the p53-mediated increase in caspase-6 expression and activation is exacerbated in cells and tissues of both neuronal and peripheral origin expressing mutant huntingtin (Htt). These findings suggest that the presence of the mutant Htt protein enhances p53 activity and lowers the apoptotic threshold, which activates caspase-6. Furthermore, these results suggest that this pathway is activated both within and outside the CNS in HD and may contribute to both loss of CNS neurons and muscle atrophy.


Asunto(s)
Caspasa 6/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Benzotiazoles/farmacología , Caspasa 6/genética , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Lamina Tipo A/metabolismo , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Tolueno/análogos & derivados , Tolueno/farmacología , Proteína p53 Supresora de Tumor/genética
2.
Acta Neuropathol Commun ; 6(1): 16, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29510748

RESUMEN

Huntington disease (HD) is caused by the expression of mutant huntingtin (mHTT) bearing a polyglutamine expansion. In HD, mHTT accumulation is accompanied by a dysfunction in basal autophagy, which manifests as specific defects in cargo loading during selective autophagy. Here we show that the expression of mHTT resistant to proteolysis at the caspase cleavage site D586 (C6R mHTT) increases autophagy, which may be due to its increased binding to the autophagy adapter p62. This is accompanied by faster degradation of C6R mHTT in vitro and a lack of mHTT accumulation the C6R mouse model with age. These findings may explain the previously observed neuroprotective properties of C6R mHTT. As the C6R mutation cannot be easily translated into a therapeutic approach, we show that a scheduled feeding paradigm is sufficient to lower mHTT levels in YAC128 mice expressing cleavable mHTT. This is consistent with a previous model, where the presence of cleavable mHTT impairs basal autophagy, while fasting-induced autophagy remains functional. In HD, mHTT clearance and autophagy may become increasingly impaired as a function of age and disease stage, because of gradually increased activity of mHTT-processing enzymes. Our findings imply that mHTT clearance could be enhanced by a regulated dietary schedule that promotes autophagy.


Asunto(s)
Autofagia/fisiología , Ayuno/fisiología , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/terapia , Proteolisis , Envejecimiento/metabolismo , Animales , Células COS , Células Cultivadas , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Humanos , Proteína Huntingtina/genética , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Neuronas/patología , Distribución Aleatoria
4.
Nat Struct Mol Biol ; 15(6): 558-66, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18511942

RESUMEN

The accumulation of beta-sheet-rich amyloid fibrils or aggregates is a complex, multistep process that is associated with cellular toxicity in a number of human protein misfolding disorders, including Parkinson's and Alzheimer's diseases. It involves the formation of various transient and intransient, on- and off-pathway aggregate species, whose structure, size and cellular toxicity are largely unclear. Here we demonstrate redirection of amyloid fibril formation through the action of a small molecule, resulting in off-pathway, highly stable oligomers. The polyphenol (-)-epigallocatechin gallate efficiently inhibits the fibrillogenesis of both alpha-synuclein and amyloid-beta by directly binding to the natively unfolded polypeptides and preventing their conversion into toxic, on-pathway aggregation intermediates. Instead of beta-sheet-rich amyloid, the formation of unstructured, nontoxic alpha-synuclein and amyloid-beta oligomers of a new type is promoted, suggesting a generic effect on aggregation pathways in neurodegenerative diseases.


Asunto(s)
Neuropatías Amiloides/prevención & control , Amiloide/efectos de los fármacos , Catequina/análogos & derivados , Placa Amiloide/efectos de los fármacos , Amiloide/química , Neuropatías Amiloides/tratamiento farmacológico , Péptidos beta-Amiloides/química , Catequina/química , Catequina/farmacología , Humanos , Fragmentos de Péptidos/química , Placa Amiloide/química , Unión Proteica , alfa-Sinucleína/química
5.
Hum Mol Genet ; 15(18): 2743-51, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16893904

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disorder for which only symptomatic treatments of limited effectiveness are available. Preventing early misfolding steps and thereby aggregation of the polyglutamine (polyQ)-containing protein huntingtin (htt) in neurons of patients may represent an attractive therapeutic strategy to postpone the onset and progression of HD. Here, we demonstrate that the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) potently inhibits the aggregation of mutant htt exon 1 protein in a dose-dependent manner. Dot-blot assays and atomic force microscopy studies revealed that EGCG modulates misfolding and oligomerization of mutant htt exon 1 protein in vitro, indicating that it interferes with very early events in the aggregation process. Also, EGCG significantly reduced polyQ-mediated htt protein aggregation and cytotoxicity in an yeast model of HD. When EGCG was fed to transgenic HD flies overexpressing a pathogenic htt exon 1 protein, photoreceptor degeneration and motor function improved. These results indicate that modulators of htt exon 1 misfolding and oligomerization like EGCG are likely to reduce polyQ-mediated toxicity in vivo. Our studies may provide the basis for the development of a novel pharmacotherapy for HD and related polyQ disorders.


Asunto(s)
Catequina/análogos & derivados , Enfermedad de Huntington/tratamiento farmacológico , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas Nucleares/química , Proteínas Nucleares/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Camellia sinensis/química , Catequina/farmacología , Drosophila melanogaster/genética , Exones , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Técnicas In Vitro , Microscopía de Fuerza Atómica , Modelos Biológicos , Neuronas Motoras/efectos de los fármacos , Complejos Multiproteicos , Mutación , Degeneración Nerviosa/tratamiento farmacológico , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Células Fotorreceptoras de Invertebrados/efectos de los fármacos , Fitoterapia , Conformación Proteica/efectos de los fármacos , Pliegue de Proteína , Estructura Cuaternaria de Proteína/efectos de los fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética
6.
Proc Natl Acad Sci U S A ; 102(3): 892-7, 2005 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-15642944

RESUMEN

Polyglutamine (polyQ) disorders, including Huntington's disease (HD), are caused by expansion of polyQ-encoding repeats within otherwise unrelated gene products. In polyQ diseases, the pathology and death of affected neurons are associated with the accumulation of mutant proteins in insoluble aggregates. Several studies implicate polyQ-dependent aggregation as a cause of neurodegeneration in HD, suggesting that inhibition of neuronal polyQ aggregation may be therapeutic in HD patients. We have used a yeast-based high-throughput screening assay to identify small-molecule inhibitors of polyQ aggregation. We validated the effects of four hit compounds in mammalian cell-based models of HD, optimized compound structures for potency, and then tested them in vitro in cultured brain slices from HD transgenic mice. These efforts identified a potent compound (IC50=10 nM) with long-term inhibitory effects on polyQ aggregation in HD neurons. Testing of this compound in a Drosophila HD model showed that it suppresses neurodegeneration in vivo, strongly suggesting an essential role for polyQ aggregation in HD pathology. The aggregation inhibitors identified in this screen represent four primary chemical scaffolds and are strong lead compounds for the development of therapeutics for human polyQ diseases.


Asunto(s)
Anilidas/farmacología , Enfermedad de Huntington/patología , Enfermedades Neurodegenerativas/prevención & control , Neuronas/patología , Péptidos/antagonistas & inhibidores , Hidrocarburos Policíclicos Aromáticos/farmacología , Sulfonamidas/farmacología , Animales , Encéfalo/patología , Dimerización , Modelos Animales de Enfermedad , Drosophila , Enfermedad de Huntington/metabolismo , Concentración 50 Inhibidora , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Relación Estructura-Actividad
7.
J Biol Chem ; 278(42): 41452-61, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-12888569

RESUMEN

Aggregation of huntingtin (htt) in neuronal inclusions is associated with the development of Huntington's disease (HD). Previously, we have shown that mutant htt fragments with polyglutamine (polyQ) tracts in the pathological range (>37 glutamines) form SDS-resistant aggregates with a fibrillar morphology, whereas wild-type htt fragments with normal polyQ domains do not aggregate. In this study we have investigated the co-aggregation of mutant and wild-type htt fragments. We found that mutant htt promotes the aggregation of wild-type htt, causing the formation of SDS-resistant co-aggregates with a fibrillar morphology. Conversely, mutant htt does not promote the fibrillogenesis of the polyQ-containing protein NOCT3 or the polyQ-binding protein PQBP1, although these proteins are recruited into inclusions containing mutant htt aggregates in mammalian cells. The formation of mixed htt fibrils is a highly selective process that not only depends on polyQ tract length but also on the surrounding amino acid sequence. Our data suggest that mutant and wild-type htt fragments may also co-aggregate in neurons of HD patients and that a loss of wild-type htt function may contribute to HD pathogenesis.


Asunto(s)
Mutación , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Animales , Western Blotting , Células COS , Proteínas Portadoras/metabolismo , Línea Celular , Proteínas de Unión al ADN , Exones , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes , Proteína Huntingtina , Enfermedad de Huntington/genética , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica , Microscopía Fluorescente , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/química , Péptidos/metabolismo , Plásmidos/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo , Transfección
8.
J Neurochem ; 89(4): 974-87, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15140196

RESUMEN

Aggregation of disease proteins is believed to be a central event in the pathology of polyglutamine diseases, whereas the relationship between aggregation and neuronal death remains controversial. We investigated this question by expressing mutant huntingtin (htt) with a defective adenovirus in different types of neurons prepared from rat cerebral cortex, striatum or cerebellum. The distribution pattern of inclusions is not identical among different types of primary neurons. On day 2 after infection, cytoplasmic inclusions are dominant in cortical and striatal neurons, whereas at day 4 the ratio of nuclear inclusions overtakes that of cytoplasmic inclusions. Meanwhile, nuclear inclusions are always predominantly present in cerebellar neurons. The percentage of inclusion-positive cells is highest in cerebellar neurons, whereas mutant htt induces cell death most remarkably in cortical neurons. As our system uses htt exon 1 protein and thus aggregation occurs independently from cleavage of the full-length htt, our observations indicate that the aggregation process is distinct among different neurons. Most of the neurons containing intracellular (either nuclear or cytoplasmic) aggregates are viable. Our findings suggest that the process of mutant htt aggregation rather than the resulting inclusion body is critical for neuronal cell death.


Asunto(s)
Cuerpos de Inclusión/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Adenoviridae/genética , Animales , Western Blotting , Muerte Celular/genética , Muerte Celular/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/embriología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Citoplasma/metabolismo , Exones/genética , Expresión Génica , Células HeLa , Humanos , Proteína Huntingtina , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/ultraestructura , Neostriado/citología , Neostriado/embriología , Proteínas del Tejido Nervioso/genética , Neuronas/clasificación , Neuronas/citología , Proteínas Nucleares/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Ratas , Ratas Wistar , Factores de Tiempo , Transfección , Expansión de Repetición de Trinucleótido/genética
9.
J Biol Chem ; 278(51): 51770-8, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-13129929

RESUMEN

Autocatalytic cleavage of lithostathine leads to the formation of quadruple-helical fibrils (QHF-litho) that are present in Alzheimer's disease. Here we show that such fibrils also occur in Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases, where they form protease-K-resistant deposits and co-localize with amyloid plaques formed from prion protein. Lithostathine does not appear to change its native-like, globular structure during fibril formation. However, we obtained evidence that a cluster of six conserved tryptophans, positioned around a surface loop, could act as a mobile structural element that can be swapped between adjacent protein molecules, thereby enabling the formation of higher order fibril bundles. Despite their association with these clinical amyloid deposits, QHF-litho differ from typical amyloid fibrils in several ways, for example they produce a different infrared spectrum and cannot bind Congo Red, suggesting that they may not represent amyloid structures themselves. Instead, we suggest that lithostathine constitutes a novel component decorating disease-associated amyloid fibrils. Interestingly, [6,6']bibenzothiazolyl-2,2'-diamine, an agent found previously to disrupt aggregates of huntingtin associated with Huntington's disease, can dissociate lithostathine bundles into individual protofilaments. Disrupting QHF-litho fibrils could therefore represent a novel therapeutic strategy to combat clinical amyloidoses.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Síndrome de Creutzfeldt-Jakob/metabolismo , Endopeptidasa K/farmacología , Proteínas del Tejido Nervioso , Secuencia de Aminoácidos , Encéfalo/patología , Proteínas de Unión al Calcio/análisis , Rojo Congo , Síndrome de Creutzfeldt-Jakob/etiología , Enfermedad de Gerstmann-Straussler-Scheinker/etiología , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Humanos , Inmunohistoquímica , Litostatina , Modelos Moleculares , Placa Amiloide/metabolismo , Conformación Proteica , Alineación de Secuencia , Espectroscopía Infrarroja por Transformada de Fourier , Análisis Espectral
10.
Proc Natl Acad Sci U S A ; 99 Suppl 4: 16400-6, 2002 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-12200548

RESUMEN

Preventing the formation of insoluble polyglutamine containing protein aggregates in neurons may represent an attractive therapeutic strategy to ameliorate Huntington's disease (HD). Therefore, the ability to screen for small molecules that suppress the self-assembly of huntingtin would have potential clinical and significant research applications. We have developed an automated filter retardation assay for the rapid identification of chemical compounds that prevent HD exon 1 protein aggregation in vitro. Using this method, a total of 25 benzothiazole derivatives that inhibit huntingtin fibrillogenesis in a dose-dependent manner were discovered from a library of approximately 184,000 small molecules. The results obtained by the filter assay were confirmed by immunoblotting, electron microscopy, and mass spectrometry. Furthermore, cell culture studies revealed that 2-amino-4,7-dimethyl-benzothiazol-6-ol, a chemical compound similar to riluzole, significantly inhibits HD exon 1 aggregation in vivo. These findings may provide the basis for a new therapeutic approach to prevent the accumulation of insoluble protein aggregates in Huntington's disease and related glutamine repeat disorders.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Péptidos/efectos de los fármacos , Tiazoles/farmacología , Benzotiazoles , Western Blotting , Línea Celular , Electroforesis en Gel de Poliacrilamida , Exones , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Microscopía Electrónica , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Péptidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tiazoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA