Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 45(4): 931-943, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27717798

RESUMEN

The efficacy of the anti-cancer immunomodulatory agent cyclophosphamide (CTX) relies on intestinal bacteria. How and which relevant bacterial species are involved in tumor immunosurveillance, and their mechanism of action are unclear. Here, we identified two bacterial species, Enterococcus hirae and Barnesiella intestinihominis that are involved during CTX therapy. Whereas E. hirae translocated from the small intestine to secondary lymphoid organs and increased the intratumoral CD8/Treg ratio, B. intestinihominis accumulated in the colon and promoted the infiltration of IFN-γ-producing γδT cells in cancer lesions. The immune sensor, NOD2, limited CTX-induced cancer immunosurveillance and the bioactivity of these microbes. Finally, E. hirae and B. intestinihominis specific-memory Th1 cell immune responses selectively predicted longer progression-free survival in advanced lung and ovarian cancer patients treated with chemo-immunotherapy. Altogether, E. hirae and B. intestinihominis represent valuable "oncomicrobiotics" ameliorating the efficacy of the most common alkylating immunomodulatory compound.


Asunto(s)
Ciclofosfamida/farmacología , Enterococcus hirae/inmunología , Factores Inmunológicos/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Animales , Colon/inmunología , Colon/microbiología , Memoria Inmunológica/inmunología , Inmunoterapia/métodos , Interferón gamma/inmunología , Intestino Delgado/inmunología , Intestino Delgado/microbiología , Ratones , Ratones Endogámicos C57BL , Monitorización Inmunológica , Proteína Adaptadora de Señalización NOD2/inmunología , Células TH1/inmunología
2.
Mol Cell ; 53(5): 710-25, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560926

RESUMEN

Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.


Asunto(s)
Acetilcoenzima A/química , Autofagia , Citosol/enzimología , Regulación Enzimológica de la Expresión Génica , Adenosina Trifosfato/química , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Proteína p300 Asociada a E1A/química , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Células HeLa , Humanos , Ácidos Cetoglutáricos/química , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismo
3.
EMBO J ; 36(12): 1688-1706, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28465321

RESUMEN

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis-associated mouse RGC differentiation depends on mitophagy, the programmed autophagic clearance of mitochondria. The elimination of mitochondria during RGC differentiation was coupled to a metabolic shift with increased lactate production and elevated expression of glycolytic enzymes at the mRNA level. Pharmacological and genetic inhibition of either mitophagy or glycolysis consistently inhibited RGC differentiation. Local hypoxia triggered expression of the mitophagy regulator BCL2/adenovirus E1B 19-kDa-interacting protein 3-like (BNIP3L, best known as NIX) at peak RGC differentiation. Retinas from NIX-deficient mice displayed increased mitochondrial mass, reduced expression of glycolytic enzymes and decreased neuronal differentiation. Similarly, we provide evidence that NIX-dependent mitophagy contributes to mitochondrial elimination during macrophage polarization towards the proinflammatory and more glycolytic M1 phenotype, but not to M2 macrophage differentiation, which primarily relies on oxidative phosphorylation. In summary, developmentally controlled mitophagy promotes a metabolic switch towards glycolysis, which in turn contributes to cellular differentiation in several distinct developmental contexts.


Asunto(s)
Diferenciación Celular , Glucólisis , Mitofagia , Retina/embriología , Células Ganglionares de la Retina/fisiología , Animales , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/metabolismo
4.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32778553

RESUMEN

Enterococcus faecium has become a major opportunistic pathogen with the emergence of vancomycin-resistant enterococci (VRE). As part of the gut microbiota, they have to cope with numerous stresses, including effects of antibiotics and other xenobiotics, especially in patients hospitalized in intensive care units (ICUs) who receive many medications. The aim of this study was to investigate the impact of the most frequently prescribed xenobiotics for ICU patients on fitness, pathogenicity, and antimicrobial resistance of the vanB-positive E. faecium Aus0004 reference strain. Several phenotypic analyses were carried out, and we observed that caspofungin, an antifungal agent belonging to the family of echinocandins, had an important effect on E. faecium growth in vitro We confirmed this effect by electron microscopy and peptidoglycan analysis and showed that, even at a subinhibitory concentration (1/4× MIC, 8 mg/liter), caspofungin had an impact on cell wall organization, especially with respect to the abundance of some muropeptide precursors. By transcriptome sequencing (RNA-seq), it was also shown that around 20% of the transcriptome was altered in the presence of caspofungin, with 321 and 259 significantly upregulated and downregulated genes, respectively. Since the fungal target of caspofungin (i.e., ß-1,3-glucan synthase) was absent in bacteria, the mechanistic pathway of caspofungin activity was investigated. The repression of genes involved in the metabolism of pyruvate seemed to have a drastic impact on bacterial cell viability, while a decrease of glycerol metabolism could explain the conformational modifications of peptidoglycan. This is the first report of caspofungin antibacterial activity against E. faecium, highlighting the potential impact of nonantibiotic xenobiotics against bacterial pathogens.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Enterococos Resistentes a la Vancomicina , Antibacterianos/farmacología , Antifúngicos/farmacología , Caspofungina , Pared Celular , Humanos , Pruebas de Sensibilidad Microbiana , Vancomicina/farmacología
5.
FASEB J ; 26(6): 2424-36, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22415311

RESUMEN

Community-acquired pneumonia presents a spectrum of clinical phenotypes, from lobar pneumonia to septic shock, while mechanisms underlying progression are incompletely understood. In a transcriptomic and metabolomic study across tissues, we examined serotype-specific regulation of signaling and metabolic pathways in C57BL/6 mice intratracheally instilled with either serotype 19F Streptococcus pneumoniae (S19; causing lobar pneumonia), or serotype 2 S. pneumoniae (S2; causing septic pneumococcal disease,) or vehicle (Todd-Hewitt broth). Samples of lung, liver, and blood were collected at 6 and 24 h postinfection and subjected to microarray analysis and mass spectrometry. Results comprise a preferential induction of cholesterol biosynthesis in lobar pneumonia at low-infection doses (10(5) colony forming units/mouse) leading to increased plasma cholesterol (vehicle: 1.8±0.12 mM, S2: 2.3±0.10 mM, S19: 2.9±0.15 mM; P<0.05, comparing S19 to vehicle and S2). This induction was pneumolysin dependent, as a pneumolysin-deficient strain of serotype 19F failed to induce cholesterol biosynthesis (S19ΔPLY: 1.9±0.03 mM). Preincubation of pneumolysin with purified cholesterol or plasma from hypercholesterolemic mice prior to intratracheal instillation protected against lung barrier dysfunction and alveolar macrophage necrosis. Cholesterol may attenuate disease severity by neutralizing pneumolysin in the alveolar compartment and thus prevent septic disease progression.


Asunto(s)
Colesterol/biosíntesis , Hígado/metabolismo , Neumonía Neumocócica/fisiopatología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Colesterol/farmacología , Femenino , Macrófagos Alveolares/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Análisis por Matrices de Proteínas , Estreptolisinas/genética , Estreptolisinas/farmacología
6.
Pediatr Res ; 73(2): 226-35, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23174705

RESUMEN

BACKGROUND: In preterm infants, the amplitude-integrated electroencephalogram (aEEG) is not established in clinical routine. The aim of this study was to derive normative data on aEEG parameters by means of longitudinal characterization and to evaluate the impact of gestational age (GA), postnatal age (PNA), postmenstrual age, sedation, and patent ductus arteriosus (PDA). METHODS: Recordings from 61 infants with GA 28-31 weeks were obtained during the first 72 h, then weekly until the age of 4 wk. Infants were divided into three groups: (i) no sedation, no PDA, (ii) sedation, no PDA, and (iii) sedation, PDA. Assessed parameters included background activity, cycling, amplitude, and log ratio of the maximum/minimum amplitude. RESULTS: GA and PNA had a significant impact within 72 h. Sedation modified aEEG, and presence of PDA was associated with reduced aEEG scores within 72 h. The log ratio of the amplitude correlated with GA but was unaffected by sedation and PDA. CONCLUSION: Evaluation of electrocortical background activity within the first postnatal hours and longitudinally over days and weeks is important to better understand the postnatal factors impacting cerebral function in preterm infants. There is a need to agree on definitions and a standardized reporting system in order to permit comparisons between studies and establish aEEG as a method for routine monitoring of preterm infants.


Asunto(s)
Lesiones Encefálicas/diagnóstico , Ondas Encefálicas , Encéfalo/fisiopatología , Electroencefalografía , Recien Nacido Prematuro , Monitoreo Fisiológico/métodos , Factores de Edad , Encéfalo/efectos de los fármacos , Lesiones Encefálicas/fisiopatología , Ondas Encefálicas/efectos de los fármacos , Conducto Arterioso Permeable/fisiopatología , Electroencefalografía/normas , Femenino , Edad Gestacional , Humanos , Hipnóticos y Sedantes/uso terapéutico , Recién Nacido , Análisis de los Mínimos Cuadrados , Modelos Logísticos , Estudios Longitudinales , Masculino , Monitoreo Fisiológico/normas , Oportunidad Relativa , Valor Predictivo de las Pruebas , Estándares de Referencia , Factores de Tiempo
7.
Plant J ; 59(5): 723-37, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19453445

RESUMEN

The mechanisms by which biotrophic and hemi-biotrophic fungal pathogens simultaneously subdue plant defences and sequester host nutrients are poorly understood. Using metabolite fingerprinting, we show that Magnaporthe grisea, the causal agent of rice blast disease, dynamically re-programmes host metabolism during plant colonization. Identical patterns of metabolic change occurred during M. grisea infections in barley, rice and Brachypodium distachyon. Targeted metabolite profiling by GC-MS confirmed the modulation of a conserved set of metabolites. In pre-symptomatic tissues, malate and polyamines accumulated, rather than being utilized to generate defensive reactive oxygen species, and the levels of metabolites associated with amelioration of redox stress in various cellular compartments increased dramatically. The activity of NADP-malic enzyme and generation of reactive oxygen species were localized to pathogen penetration sites, and both appeared to be suppressed in compatible interactions. Early diversion of the shikimate pathway to produce quinate was observed, as well as accumulation of non-polymerized lignin precursors. These data are consistent with modulation of defensive phenylpropanoid metabolism by M. grisea and the inability of susceptible hosts to mount a hypersensitive reaction or produce lignified papillae (both involving reactive oxygen species) to restrict pathogen invasion. Rapid proliferation of M. grisea hyphae in plant tissue after 3 days was associated with accelerated nutrient acquisition and utilization by the pathogen. Conversion of photoassimilate into mannitol and glycerol for carbon sequestration and osmolyte production appear to drive hyphal growth. Taken together, our results suggest that fungal pathogens deploy a common metabolic re-programming strategy in diverse host species to suppress plant defence and colonize plant tissue.


Asunto(s)
Hordeum/genética , Magnaporthe , Metabolómica , Oryza/genética , Enfermedades de las Plantas/genética , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Hordeum/metabolismo , Hordeum/microbiología , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas , Oryza/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo
8.
Anal Biochem ; 406(2): 124-31, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20619249

RESUMEN

Current quantitative metabolomic research in brain tissue is challenged by several analytical issues. To compare data of metabolite pattern, ratios of individual metabolite concentrations and composed classifiers characterizing a distinct state, standardized workup conditions, and extraction medium are crucial. Differences in physicochemical properties of individual compounds and compound classes such as polarity determine extraction yields and, thus, ratios of compounds with varying properties. Also, variations in suppressive effects related to coextracted matrix components affect standards or references and their concentration-dependent responses.The selection of a common tissue extraction protocol is an ill-posed problem because it can be regarded as a multiple objective decision depending on factors such as sample handling practicability, measurement precision, control of matrix effects, and relevance of the chemical assay. This study systematically evaluates the impact of extraction solvents and the impact of the complex brain tissue on measured metabolite levels, taking into account ionization efficiency as well as challenges encountered in the trace-level quantification of the analytes in brain matrices. In comparison with previous studies that relied on nontargeted platforms, consequently emphasizing the global behavior of the metabolomic fingerprint, here we focus on several series of metabolites spanning over extensive polarity, concentration, and molecular mass ranges.


Asunto(s)
Investigación Biomédica , Encéfalo/metabolismo , Espectrometría de Masas/métodos , Metabolómica/métodos , Animales , Animales Recién Nacidos , Metaboloma , Solventes , Sus scrofa
9.
Br J Nutr ; 103(8): 1127-38, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20003623

RESUMEN

Selective breeding of dogs has culminated in a large number of modern breeds distinctive in terms of size, shape and behaviour. Inadvertently, a range of breed-specific genetic disorders have become fixed in some pure-bred populations. Several inherited conditions confer chronic metabolic defects that are influenced strongly by diet, but it is likely that many less obvious breed-specific differences in physiology exist. Using Labrador retrievers and miniature Schnauzers maintained in a simulated domestic setting on a controlled diet, an experimental design was validated in relation to husbandry, sampling and sample processing for metabolomics. Metabolite fingerprints were generated from 'spot' urine samples using flow injection electrospray MS (FIE-MS). With class based on breed, urine chemical fingerprints were modelled using Random Forest (a supervised data classification technique), and metabolite features (m/z) explanatory of breed-specific differences were putatively annotated using the ARMeC database (http://www.armec.org). GC-MS profiling to confirm FIE-MS predictions indicated major breed-specific differences centred on the metabolism of diet-related polyphenols. Metabolism of further diet components, including potentially prebiotic oligosaccharides, animal-derived fats and glycerol, appeared significantly different between the two breeds. Analysis of the urinary metabolome of young male dogs representative of a wider range of breeds from animals maintained under domestic conditions on unknown diets provided preliminary evidence that many breeds may indeed have distinctive metabolic differences, with significant differences particularly apparent in comparisons between large and smaller breeds.


Asunto(s)
Alimentación Animal , Perros/genética , Perros/orina , Urinálisis/métodos , Animales , Animales Domésticos/genética , Animales Domésticos/metabolismo , Dermatoglifia del ADN/métodos , Dermatoglifia del ADN/veterinaria , Huella de ADN/métodos , Huella de ADN/veterinaria , Frutas , Cromatografía de Gases y Espectrometría de Masas , Masculino , Metaboloma , Especificidad de la Especie , Espectrometría de Masa por Ionización de Electrospray , Verduras
10.
Angew Chem Int Ed Engl ; 49(32): 5426-45, 2010 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-20629054

RESUMEN

Metabolomics is a truly interdisciplinary field of science, which combines analytical chemistry, platform technology, mass spectrometry, and NMR spectroscopy with sophisticated data analysis. Applied to biomarker discovery, it includes aspects of pathobiochemistry, systems biology/medicine, and molecular diagnostics and requires bioinformatics and multivariate statistics. While successfully established in the screening of inborn errors in neonates, metabolomics is now widely used in the characterization and diagnostic research of an ever increasing number of diseases. In this Review we highlight important technical prerequisites as well as recent developments in metabolomics and metabolomics data analysis with special emphasis on their utility in biomarker identification and qualification, as well as targeted metabolomics by employing high-throughput mass spectrometry.


Asunto(s)
Biomarcadores/análisis , Metabolómica/métodos , Animales , Biomarcadores/metabolismo , Humanos , Metabolismo de los Lípidos , Lípidos/análisis , Espectrometría de Masas/métodos , Metabolómica/tendencias
11.
Cell Death Discov ; 6(1): 129, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33298861

RESUMEN

Salicylate, the active derivative of aspirin (acetylsalicylate), recapitulates the mode of action of caloric restriction inasmuch as it stimulates autophagy through the inhibition of the acetyltransferase activity of EP300. Here, we directly compared the metabolic effects of aspirin medication with those elicited by 48 h fasting in mice, revealing convergent alterations in the plasma and the heart metabolome. Aspirin caused a transient reduction of general protein acetylation in blood leukocytes, accompanied by the induction of autophagy. However, these effects on global protein acetylation could not be attributed to the mere inhibition of EP300, as determined by epistatic experiments and exploration of the acetyl-proteome from salicylate-treated EP300-deficient cells. Aspirin reduced high-fat diet-induced obesity, diabetes, and hepatosteatosis. These aspirin effects were observed in autophagy-competent mice but not in two different models of genetic (Atg4b-/- or Bcln1+/-) autophagy-deficiency. Aspirin also improved tumor control by immunogenic chemotherapeutics, and this effect was lost in T cell-deficient mice, as well as upon knockdown of an essential autophagy gene (Atg5) in cancer cells. Hence, the health-improving effects of aspirin depend on autophagy.

12.
Nat Commun ; 11(1): 3819, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32732875

RESUMEN

Hormone receptor (HR)+ breast cancer (BC) causes most BC-related deaths, calling for improved therapeutic approaches. Despite expectations, immune checkpoint blockers (ICBs) are poorly active in patients with HR+ BC, in part reflecting the lack of preclinical models that recapitulate disease progression in immunocompetent hosts. We demonstrate that mammary tumors driven by medroxyprogesterone acetate (M) and 7,12-dimethylbenz[a]anthracene (D) recapitulate several key features of human luminal B HR+HER2- BC, including limited immune infiltration and poor sensitivity to ICBs. M/D-driven oncogenesis is accelerated by immune defects, demonstrating that M/D-driven tumors are under immunosurveillance. Safe nutritional measures including nicotinamide (NAM) supplementation efficiently delay M/D-driven oncogenesis by reactivating immunosurveillance. NAM also mediates immunotherapeutic effects against established M/D-driven and transplantable BC, largely reflecting increased type I interferon secretion by malignant cells and direct stimulation of immune effector cells. Our findings identify NAM as a potential strategy for the prevention and treatment of HR+ BC.


Asunto(s)
Neoplasias de la Mama/terapia , Inmunoterapia/métodos , Niacinamida/administración & dosificación , Receptor ErbB-2/inmunología , 9,10-Dimetil-1,2-benzantraceno , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inmunología , Progresión de la Enfermedad , Femenino , Humanos , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/prevención & control , Acetato de Medroxiprogesterona , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor ErbB-2/metabolismo , Análisis de Supervivencia
14.
BMC Bioinformatics ; 10: 227, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19622150

RESUMEN

BACKGROUND: Metabolomics experiments using Mass Spectrometry (MS) technology measure the mass to charge ratio (m/z) and intensity of ionised molecules in crude extracts of complex biological samples to generate high dimensional metabolite 'fingerprint' or metabolite 'profile' data. High resolution MS instruments perform routinely with a mass accuracy of < 5 ppm (parts per million) thus providing potentially a direct method for signal putative annotation using databases containing metabolite mass information. Most database interfaces support only simple queries with the default assumption that molecules either gain or lose a single proton when ionised. In reality the annotation process is confounded by the fact that many ionisation products will be not only molecular isotopes but also salt/solvent adducts and neutral loss fragments of original metabolites. This report describes an annotation strategy that will allow searching based on all potential ionisation products predicted to form during electrospray ionisation (ESI). RESULTS: Metabolite 'structures' harvested from publicly accessible databases were converted into a common format to generate a comprehensive archive in MZedDB. 'Rules' were derived from chemical information that allowed MZedDB to generate a list of adducts and neutral loss fragments putatively able to form for each structure and calculate, on the fly, the exact molecular weight of every potential ionisation product to provide targets for annotation searches based on accurate mass. We demonstrate that data matrices representing populations of ionisation products generated from different biological matrices contain a large proportion (sometimes > 50%) of molecular isotopes, salt adducts and neutral loss fragments. Correlation analysis of ESI-MS data features confirmed the predicted relationships of m/z signals. An integrated isotope enumerator in MZedDB allowed verification of exact isotopic pattern distributions to corroborate experimental data. CONCLUSION: We conclude that although ultra-high accurate mass instruments provide major insight into the chemical diversity of biological extracts, the facile annotation of a large proportion of signals is not possible by simple, automated query of current databases using computed molecular formulae. Parameterising MZedDB to take into account predicted ionisation behaviour and the biological source of any sample improves greatly both the frequency and accuracy of potential annotation 'hits' in ESI-MS data.


Asunto(s)
Biología Computacional/métodos , Metabolómica , Programas Informáticos , Espectrometría de Masa por Ionización de Electrospray/métodos , Bases de Datos Factuales , Espectrometría de Masa por Ionización de Electrospray/instrumentación
15.
Aging (Albany NY) ; 11(11): 3418-3431, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31173576

RESUMEN

The metabolite α-ketoglutarate is membrane-impermeable, meaning that it is usually added to cells in the form of esters such as dimethyl -ketoglutarate (DMKG), trifluoromethylbenzyl α-ketoglutarate (TFMKG) and octyl α-ketoglutarate (O-KG). Once these compounds cross the plasma membrane, they are hydrolyzed by esterases to generate α-ketoglutarate, which remains trapped within cells. Here, we systematically compared DMKG, TFMKG and O-KG for their metabolic and functional effects. All three compounds similarly increased the intracellular levels of α-ketoglutarate, yet each of them had multiple effects on other metabolites that were not shared among the three agents, as determined by mass spectrometric metabolomics. While all three compounds reduced autophagy induced by culture in nutrient-free conditions, TFMKG and O-KG (but not DMKG) caused an increase in baseline autophagy in cells cultured in complete medium. O-KG (but neither DMKG nor TFMK) inhibited oxidative phosphorylation and exhibited cellular toxicity. Altogether, these results support the idea that intracellular α-ketoglutarate inhibits starvation-induced autophagy and that it has no direct respiration-inhibitory effect.


Asunto(s)
Autofagia/efectos de los fármacos , Ácidos Cetoglutáricos/metabolismo , Autofagia/fisiología , Línea Celular Tumoral , Humanos , Ácidos Cetoglutáricos/farmacología , Espectrometría de Masas , Fosforilación Oxidativa/efectos de los fármacos
16.
Cell Rep ; 27(3): 820-834.e9, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995479

RESUMEN

Inhibition of oxidative phosphorylation (OXPHOS) by 1-cyclopropyl-4-(4-[(5-methyl-3-(3-[4-(trifluoromethoxy)phenyl]-1,2,4-oxadiazol-5-yl)-1H-pyrazol-1-yl)methyl]pyridin-2-yl)piperazine (BAY87-2243, abbreviated as B87), a complex I inhibitor, fails to kill human cancer cells in vitro. Driven by this consideration, we attempted to identify agents that engage in synthetically lethal interactions with B87. Here, we report that dimethyl α-ketoglutarate (DMKG), a cell-permeable precursor of α-ketoglutarate that lacks toxicity on its own, kills cancer cells when combined with B87 or other inhibitors of OXPHOS. DMKG improved the antineoplastic effect of B87, both in vitro and in vivo. This combination caused MDM2-dependent, tumor suppressor protein p53 (TP53)-independent transcriptional reprogramming and alternative exon usage affecting multiple glycolytic enzymes, completely blocking glycolysis. Simultaneous inhibition of OXPHOS and glycolysis provoked a bioenergetic catastrophe culminating in the activation of a cell death program that involved disruption of the mitochondrial network and activation of PARP1, AIFM1, and APEX1. These results unveil a metabolic liability of human cancer cells that may be harnessed for the development of therapeutic regimens.


Asunto(s)
Apoptosis/efectos de los fármacos , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Ácidos Cetoglutáricos/farmacología , Animales , Factor Inductor de la Apoptosis/metabolismo , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Femenino , Glucólisis/efectos de los fármacos , Humanos , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Oxadiazoles/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Pirazoles/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
17.
Cell Res ; 29(10): 846-861, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31481761

RESUMEN

PD-1 blockade represents a major therapeutic avenue in anticancer immunotherapy. Delineating mechanisms of secondary resistance to this strategy is increasingly important. Here, we identified the deleterious role of signaling via the type I interferon (IFN) receptor in tumor and antigen presenting cells, that induced the expression of nitric oxide synthase 2 (NOS2), associated with intratumor accumulation of regulatory T cells (Treg) and myeloid cells and acquired resistance to anti-PD-1 monoclonal antibody (mAb). Sustained IFNß transcription was observed in resistant tumors, in turn inducing PD-L1 and NOS2 expression in both tumor and dendritic cells (DC). Whereas PD-L1 was not involved in secondary resistance to anti-PD-1 mAb, pharmacological or genetic inhibition of NOS2 maintained long-term control of tumors by PD-1 blockade, through reduction of Treg and DC activation. Resistance to immunotherapies, including anti-PD-1 mAb in melanoma patients, was also correlated with the induction of a type I IFN signature. Hence, the role of type I IFN in response to PD-1 blockade should be revisited as sustained type I IFN signaling may contribute to resistance to therapy.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Interferón Tipo I/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Células Dendríticas/citología , Células Dendríticas/metabolismo , Resistencia a Antineoplásicos , Humanos , Estimación de Kaplan-Meier , Melanoma/tratamiento farmacológico , Melanoma/mortalidad , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
18.
Nat Commun ; 10(1): 651, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783116

RESUMEN

Ageing constitutes the most important risk factor for all major chronic ailments, including malignant, cardiovascular and neurodegenerative diseases. However, behavioural and pharmacological interventions with feasible potential to promote health upon ageing remain rare. Here we report the identification of the flavonoid 4,4'-dimethoxychalcone (DMC) as a natural compound with anti-ageing properties. External DMC administration extends the lifespan of yeast, worms and flies, decelerates senescence of human cell cultures, and protects mice from prolonged myocardial ischaemia. Concomitantly, DMC induces autophagy, which is essential for its cytoprotective effects from yeast to mice. This pro-autophagic response induces a conserved systemic change in metabolism, operates independently of TORC1 signalling and depends on specific GATA transcription factors. Notably, we identify DMC in the plant Angelica keiskei koidzumi, to which longevity- and health-promoting effects are ascribed in Asian traditional medicine. In summary, we have identified and mechanistically characterised the conserved longevity-promoting effects of a natural anti-ageing drug.


Asunto(s)
Envejecimiento/efectos de los fármacos , Autofagia/efectos de los fármacos , Flavonoides/farmacología , Longevidad/efectos de los fármacos , Envejecimiento/fisiología , Angelica/química , Animales , Caenorhabditis elegans/efectos de los fármacos , Proteínas de Transporte de Catión/genética , Muerte Celular/efectos de los fármacos , Línea Celular/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Flavonoides/administración & dosificación , Factores de Transcripción GATA/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Longevidad/fisiología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Medicina Tradicional de Asia Oriental , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/tratamiento farmacológico , Extractos Vegetales/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transducción de Señal , Sirolimus/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética
19.
Oncoimmunology ; 7(9): e1462431, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30228932

RESUMEN

The analysis of tumor growth curves is standard practice in experimental oncology including tumor immunology. In experimental oncology, cancer cells are inoculated into rodents (mostly mice) and their growth is monitored by measuring tumor diameter, surface or volume over time as a function of distinct treatments. Then, different groups of tumors/treatments are compared among each other for their evolution and possible responses to treatment. The R package TumGrowth has been created as a software tool allowing to carry out a series of statistical comparisons across or between groups of tumor growth curves obtained in a standard laboratory, for experimenters with limited knowledge in statistics. TumGrowth is freely available online at https://kroemerlab.shinyapps.io/TumGrowth/ and can be downloaded into any computer. It offers an exhaustive panoply of tools to visualize and analyze complex data sets including longitudinal, cross-sectional and time-to-endpoint measurements.

20.
Cell Rep ; 22(9): 2395-2407, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29490275

RESUMEN

The age-associated deterioration in cellular and organismal functions associates with dysregulation of nutrient-sensing pathways and disabled autophagy. The reactivation of autophagic flux may prevent or ameliorate age-related metabolic dysfunctions. Non-toxic compounds endowed with the capacity to reduce the overall levels of protein acetylation and to induce autophagy have been categorized as caloric restriction mimetics (CRMs). Here, we show that aspirin or its active metabolite salicylate induce autophagy by virtue of their capacity to inhibit the acetyltransferase activity of EP300. While salicylate readily stimulates autophagic flux in control cells, it fails to further increase autophagy levels in EP300-deficient cells, as well as in cells in which endogenous EP300 has been replaced by salicylate-resistant EP300 mutants. Accordingly, the pro-autophagic activity of aspirin and salicylate on the nematode Caenorhabditis elegans is lost when the expression of the EP300 ortholog cpb-1 is reduced. Altogether, these findings identify aspirin as an evolutionary conserved CRM.


Asunto(s)
Aspirina/farmacología , Restricción Calórica , Acetilcoenzima A/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Proteína p300 Asociada a E1A/metabolismo , Humanos , Metaboloma/efectos de los fármacos , Metabolómica , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA