Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biology (Basel) ; 10(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34681092

RESUMEN

The early removal of drug delivery agents before reaching the affected target remains an area of interest to researchers. Several magnetotactic bacteria (MTB) have been used as self-propelled drug delivery agents, and they can also be controlled by an external magnetic field. By attaching the PEG-biotin polymer, the bacteria are turned into a stealth material that can escape from the phagocytosis process and reach the area of interest with the drug load. In the study, we developed a potential drug carrier by attaching the PEG-biotin to the MTB-through-NHS crosslinker to form a MTB/PEG-biotin complex. The attachment stability, efficacy, and bacterial viability upon attachment of the PEG-biotin polymer were investigated. Biological applications were carried out using a cytotoxicity assay of THP-1 cells, and the results indicate that the MTB/PEG-biotin complex is less harmful to cell viability compared to MTB alone. Along with cytotoxicity, an assay for cell association was also evaluated to assess the complex as a potential stealth material. The development of these complexes focuses on an easy, time-saving, and stable technique of polymer attachment with the bacteria, without damaging the cell's surface, so as to make it a strong and reliable delivery agent.

2.
RSC Adv ; 10(71): 43480-43488, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-35519686

RESUMEN

We demonstrated a simple one-pot synthesis approach for the controlled composition of homogeneous FePt and phase-controlled heterostructured FePt/Fe3O4 nanocubes (NCs) utilizing 1,2-hexadecanediol and 1-octadecene as the reducing agents, respectively. When the Fe : Pt precursor ratio was varied from 1 : 1 to 4 : 1 and 1,2-hexadecanediol was utilized as the reducing agent, homogeneous FePt NCs were formed, whereas the heterostructures of FePt/Fe3O4 NCs were obtained when utilizing 1-octadecene as the reducing agent at Fe : Pt ratio of 4 : 1. The initial domination of nucleation of Pt-rich species and the subsequent deposition of Fe atoms leads to the formation of homogeneous FePt NCs. Heterostructured FePt/Fe3O4 NCs were obtained by the initial FePt seed formation, which was then followed by the heterogeneous growth of Fe3O4. The heterostructured FePt/Fe3O4 NCs exhibited two phases, i.e., FePt phase with a (111) facet of the fcc and Fe3O4 phase with an inverse cubic spinel structure. Moreover, both the FePt and the FePt/Fe3O4 NCs demonstrated almost negligible coercivity, which confirmed a typical superparamagnetic behavior. Furthermore, the cell viability tests of the FePt and FePt/Fe3O4 NCs demonstrated excellent biocompatibilities. Hence, the NCs could be useful for various biomedical applications, including MRI contrast agents, hyperthermia, and as a label in magnetic biochips.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA