Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 622(7981): 180-187, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37648864

RESUMEN

Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.


Asunto(s)
Antibacterianos , Sitios de Unión , ARN Polimerasas Dirigidas por ADN , Escherichia coli , Mutación , Rifampin , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Roturas del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Nucleótidos/deficiencia , Nucleótidos/metabolismo , Regiones Promotoras Genéticas , Rifampin/química , Rifampin/metabolismo , Rifampin/farmacología , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
2.
Bioessays ; 37(1): 12-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25345862

RESUMEN

Transcription-coupled repair (TCR) is a phenomenon that exists in a wide variety of organisms from bacteria to humans. This mechanism allows cells to repair the actively transcribed DNA strand much faster than the non-transcribed one. At the sites of bulky DNA damage RNA polymerase stalls, initiating recruitment of the repair machinery. It is a commonly accepted paradigm that bacterial cells utilize a sole coupling factor, called Mfd to initiate TCR. According to that model, Mfd removes transcription complexes stalled at the lesion site and simultaneously recruits repair machinery. However, this model was recently put in doubt by various discrepancies between the proposed universal role of Mfd in the TCR and its biochemical and phenotypical properties. Here, I present a second pathway of bacterial TCR recently discovered in my laboratory, which does not involve Mfd but implicates a common repair factor, UvrD, in a central position in the process.


Asunto(s)
ADN Helicasas/metabolismo , Animales , Daño del ADN , Reparación del ADN , Humanos , Modelos Biológicos , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Mol Cell ; 10(3): 623-34, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12408829

RESUMEN

Each elementary step of transcription involves translocation of the 3' terminus of RNA in the RNA polymerase active center, followed by the entry of a nucleoside triphosphate. The structural basis of these transitions was studied using RNA-protein crosslinks. The contacts were mapped and projected onto the crystal structure, in which the "F bridge" helix in the beta' subunit is either bent or relaxed. Bending/relaxation of the F bridge correlates with lateral movements of the RNA 3' terminus. The bent conformation is sterically incompatable with the occupancy of the nucleotide site, suggesting that the switch regulates both the entry of substrates and the translocation of the transcript. The switch occurs as part of a cooperative transition of a larger structural domain that consists of the F helix and the supporting G loop.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Nucleótidos/metabolismo , Estructura Terciaria de Proteína , Transcripción Genética , Sitios de Unión , Reactivos de Enlaces Cruzados/metabolismo , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/genética , Sustancias Macromoleculares , Modelos Moleculares , Estructura Molecular , Mutación Puntual , Unión Proteica , Subunidades de Proteína , Sitio de Iniciación de la Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA