RESUMEN
New neurons arise from quiescent adult neural progenitors throughout life in specific regions of the mammalian brain. Little is known about the embryonic origin and establishment of adult neural progenitors. Here, we show that Hopx+ precursors in the mouse dentate neuroepithelium at embryonic day 11.5 give rise to proliferative Hopx+ neural progenitors in the primitive dentate region, and they, in turn, generate granule neurons, but not other neurons, throughout development and then transition into Hopx+ quiescent radial glial-like neural progenitors during an early postnatal period. RNA-seq and ATAC-seq analyses of Hopx+ embryonic, early postnatal, and adult dentate neural progenitors further reveal common molecular and epigenetic signatures and developmental dynamics. Together, our findings support a "continuous" model wherein a common neural progenitor population exclusively contributes to dentate neurogenesis throughout development and adulthood. Adult dentate neurogenesis may therefore represent a lifelong extension of development that maintains heightened plasticity in the mammalian hippocampus.
Asunto(s)
Células Madre Embrionarias/metabolismo , Neurogénesis , Animales , Diferenciación Celular , Giro Dentado/metabolismo , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/citología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hipocampo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismoRESUMEN
Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.
Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Lámina Nuclear/metabolismo , Células Madre/citología , Animales , Genoma , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre/metabolismoRESUMEN
Stem-cell differentiation to desired lineages requires navigating alternating developmental paths that often lead to unwanted cell types. Hence, comprehensive developmental roadmaps are crucial to channel stem-cell differentiation toward desired fates. To this end, here, we map bifurcating lineage choices leading from pluripotency to 12 human mesodermal lineages, including bone, muscle, and heart. We defined the extrinsic signals controlling each binary lineage decision, enabling us to logically block differentiation toward unwanted fates and rapidly steer pluripotent stem cells toward 80%-99% pure human mesodermal lineages at most branchpoints. This strategy enabled the generation of human bone and heart progenitors that could engraft in respective in vivo models. Mapping stepwise chromatin and single-cell gene expression changes in mesoderm development uncovered somite segmentation, a previously unobservable human embryonic event transiently marked by HOPX expression. Collectively, this roadmap enables navigation of mesodermal development to produce transplantable human tissue progenitors and uncover developmental processes. VIDEO ABSTRACT.
Asunto(s)
Mesodermo/citología , Transducción de Señal , Proteínas Morfogenéticas Óseas/metabolismo , Huesos/citología , Huesos/metabolismo , Corazón/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Humanos , Mesodermo/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Línea Primitiva/citología , Línea Primitiva/metabolismo , Análisis de la Célula Individual , Somitos/metabolismo , Células Madre , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismoRESUMEN
Zoonotic viruses, such as HIV, Ebola virus, coronaviruses, influenza A viruses, hantaviruses, or henipaviruses, can result in profound pathology in humans. In contrast, populations of the reservoir hosts of zoonotic pathogens often appear to tolerate these infections with little evidence of disease. Why are viruses more dangerous in one species than another? Immunological studies investigating quantitative and qualitative differences in the host-virus equilibrium in animal reservoirs will be key to answering this question, informing new approaches for treating and preventing zoonotic diseases. Integrating an understanding of host immune responses with epidemiological, ecological, and evolutionary insights into viral emergence will shed light on mechanisms that minimize fitness costs associated with viral infection, facilitate transmission to other hosts, and underlie the association of specific reservoir hosts with multiple emerging viruses. Reservoir host studies provide a rich opportunity for elucidating fundamental immunological processes and their underlying genetic basis, in the context of distinct physiological and metabolic constraints that contribute to host resistance and disease tolerance.
Asunto(s)
Fenómenos Fisiológicos de los Virus , Zoonosis/virología , Animales , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Reservorios de Enfermedades , Interacciones Huésped-Patógeno , Humanos , Virosis , Zoonosis/inmunología , Zoonosis/transmisiónRESUMEN
Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.
Asunto(s)
Impresión Genómica , ARN Largo no Codificante , Alelos , Animales , Cromatina/genética , Metilación de ADN , Proteína Adaptadora GRB10/genética , Corazón , RatonesRESUMEN
Engineering a patient's own T cells to selectively target and eliminate tumour cells has cured patients with untreatable haematologic cancers. These results have energized the field to apply chimaeric antigen receptor (CAR) T therapy throughout oncology. However, evidence from clinical and preclinical studies underscores the potential of CAR T therapy beyond oncology in treating autoimmunity, chronic infections, cardiac fibrosis, senescence-associated disease and other conditions. Concurrently, the deployment of new technologies and platforms provides further opportunity for the application of CAR T therapy to noncancerous pathologies. Here we review the rationale behind CAR T therapy, current challenges faced in oncology, a synopsis of preliminary reports in noncancerous diseases, and a discussion of relevant emerging technologies. We examine potential applications for this therapy in a wide range of contexts. Last, we highlight concerns regarding specificity and safety and outline the path forward for CAR T therapy beyond cancer.
Asunto(s)
Envejecimiento , Enfermedades Autoinmunes , Fibrosis , Cardiopatías , Inmunoterapia Adoptiva , Infecciones , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Neoplasias Hematológicas/inmunología , Neoplasias Hematológicas/terapia , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/tendencias , Neoplasias/inmunología , Neoplasias/terapia , Receptores Quiméricos de Antígenos/uso terapéutico , Linfocitos T/inmunología , Enfermedades Autoinmunes/terapia , Infecciones/terapia , Fibrosis/terapia , Envejecimiento/patología , Cardiopatías/terapiaRESUMEN
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.
Asunto(s)
COVID-19 , Epigénesis Genética , Histonas , Interacciones Microbiota-Huesped , Imitación Molecular , SARS-CoV-2 , Proteínas Virales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigenoma/genética , Histonas/química , Histonas/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismoRESUMEN
Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed1. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect. These properties of ketogenic diets are recapitulated by the ketone body ß-hydroxybutyrate (BHB), which reduces the proliferation of colonic crypt cells and potently suppresses intestinal tumour growth. We find that BHB acts through the surface receptor Hcar2 and induces the transcriptional regulator Hopx, thereby altering gene expression and inhibiting cell proliferation. Cancer organoid assays and single-cell RNA sequencing of biopsies from patients with CRC provide evidence that elevated BHB levels and active HOPX are associated with reduced intestinal epithelial proliferation in humans. This study thus identifies a BHB-triggered pathway regulating intestinal tumorigenesis and indicates that oral or systemic interventions with a single metabolite may complement current prevention and treatment strategies for CRC.
Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Animales , Proliferación Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/prevención & control , HumanosRESUMEN
The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of "chromatin competence" that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development.
Asunto(s)
Corazón/crecimiento & desarrollo , Miocardio/citología , Animales , Linaje de la Célula , Cromatina/química , Regulación del Desarrollo de la Expresión Génica , Humanos , Proteínas de Complejo Poro Nuclear/fisiología , Células Madre/citología , Factores de Transcripción/metabolismoRESUMEN
Ischemic heart disease is a leading cause of death worldwide, manifested clinically as myocardial infarction (and ischemic cardiomyopathy. Presently, there exists a notable scarcity of efficient interventions to restore cardiac function after myocardial infarction. Cumulative evidence suggests that impaired tissue immunity within the ischemic microenvironment aggravates cardiac dysfunction, contributing to progressive heart failure. Recent research breakthroughs propose immunotherapy as a potential approach by leveraging immune and stroma cells to recalibrate the immune microenvironment, holding significant promise for the treatment of ischemic heart disease. In this Primer, we highlight three emerging strategies for immunomodulatory therapy in managing ischemic cardiomyopathy: targeting vascular endothelial cells to rewire tissue immunity, reprogramming myeloid cells to bolster their reparative function, and utilizing adoptive T cell therapy to ameliorate fibrosis. We anticipate that immunomodulatory therapy will offer exciting opportunities for ischemic heart disease treatment.
Asunto(s)
Isquemia Miocárdica , Humanos , Isquemia Miocárdica/terapia , Isquemia Miocárdica/inmunología , Animales , Inmunomodulación , Células Endoteliales/inmunología , Inmunoterapia/métodosRESUMEN
HOXB13 is a key lineage homeobox transcription factor that plays a critical role in the differentiation of the prostate gland. Several studies have suggested that HOXB13 alterations may be involved in prostate cancer development and progression. Despite its potential biological relevance, little is known about the expression of HOXB13 across the disease spectrum of prostate cancer. To this end, we validated a HOXB13 antibody using genetic controls and investigated HOXB13 protein expression in murine and human developing prostates, localized prostate cancers, and metastatic castration-resistant prostate cancers. We observed that HOXB13 expression increases during later stages of murine prostate development. All localized prostate cancers showed HOXB13 protein expression. Interestingly, lower HOXB13 expression levels were observed in higher-grade tumors, although no significant association between HOXB13 expression and recurrence or disease-specific survival was found. In advanced metastatic prostate cancers, HOXB13 expression was retained in the majority of tumors. While we observed lower levels of HOXB13 protein and mRNA levels in tumors with evidence of lineage plasticity, 84% of androgen receptor-negative castration-resistant prostate cancers and neuroendocrine prostate cancers (NEPCs) retained detectable levels of HOXB13. Notably, the reduced expression observed in NEPCs was associated with a gain of HOXB13 gene body CpG methylation. In comparison to the commonly used prostate lineage marker NKX3.1, HOXB13 showed greater sensitivity in detecting advanced metastatic prostate cancers. Additionally, in a cohort of 837 patients, 383 with prostatic and 454 with non-prostatic tumors, we found that HOXB13 immunohistochemistry had a 97% sensitivity and 99% specificity for prostatic origin. Taken together, our studies provide valuable insight into the expression pattern of HOXB13 during prostate development and cancer progression. Furthermore, our findings support the utility of HOXB13 as a diagnostic biomarker for prostate cancer, particularly to confirm the prostatic origin of advanced metastatic castration-resistant tumors. © 2023 The Pathological Society of Great Britain and Ireland.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Genes Homeobox , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Reino UnidoRESUMEN
Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.
Asunto(s)
Linfocitos T CD8-positivos , Fibrosis Endomiocárdica/terapia , Inmunoterapia Adoptiva , Animales , Antígenos de Superficie/inmunología , Linfocitos T CD8-positivos/inmunología , Fibrosis Endomiocárdica/inmunología , Fibroblastos/inmunología , Humanos , Masculino , Ratones , Ovalbúmina/inmunología , Cicatrización de HeridasRESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Cardiac fibrosis remains an unmet clinical need that has so far proven difficult to eliminate using current therapies. As such, novel technologies are needed that can target the pathological fibroblasts responsible for fibrosis and adverse tissue remodeling. mRNA encapsulated in lipid nanoparticles (LNPs) is an emerging technology that could offer a solution to this problem. Indeed, this strategy has already shown clinical success with the mRNA COVID-19 vaccines. In this AJP perspective, we discuss how this technology can be leveraged to specifically target cardiac fibrosis via several complementary strategies. First, we discuss the successful preclinical studies in a mouse model of cardiac injury to use T cell-targeted LNPs to produce anti-fibroblast chimeric antigen receptor T (CAR T) cells in vivo that could effectively reduce cardiac fibrosis. Next, we discuss how these T cell-targeted LNPs could be used to generate T regulatory cells (T-regs), which could migrate to areas of active fibrosis and dampen inflammation through paracrine effects as an alternative to active fibroblast killing by CAR T cells. Finally, we conclude with thoughts on directly targeting pathological fibroblasts to deliver RNAs that could interfere with fibroblast activation and activity. We hope this discussion serves as a catalyst for finding approaches that harness the power of mRNA and LNPs to eliminate cardiac fibrosis and treat other fibrotic diseases amenable to such interventions.NEW & NOTEWORTHY Cardiac fibrosis has few specific interventions available for effective treatment. mRNA encapsulated in lipid nanoparticles could provide a novel solution for treating cardiac fibrosis. This AJP perspective discusses what possible strategies could rely on this technology, from in vivo-produced CAR T cells that kill pathological fibroblasts to in vivo-produced T regulatory cells that dampen the concomitant profibrotic inflammatory cells contributing to remodeling, directly targeting fibroblasts and eliminating them or silencing profibrotic pathways.
Asunto(s)
Vacunas contra la COVID-19 , Cardiomiopatías , Ratones , Animales , Humanos , Vacunas contra la COVID-19/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cardiomiopatías/metabolismo , Fibroblastos/metabolismo , FibrosisRESUMEN
Chromophobe renal cell carcinoma (ChRCC) is the third most common subtype of renal cell carcinoma and typically exhibits indolent behavior, though a rare subset can exhibit high-grade morphologic features and is associated with a poor prognosis. Although there are limited data on the molecular characteristics of metastatic and sarcomatoid ChRCC, the molecular features of high-grade, nonsarcomatoid ChRCC remain unexplored. Herein, we characterize 22 cases of ChRCC with high-grade, nonsarcomatoid components. High-grade ChRCC frequently demonstrated advanced stage at diagnosis (64% ≥pT3a or N1), with regions of extrarenal extension, nodal metastases, and vascular invasion consisting solely of high-grade ChRCC morphologically. We performed spatially guided panel-based DNA sequencing on 11 cases comparing high-grade and low-grade regions (n = 22 samples). We identified recurring somatic alterations emblematic of ChRCC, including deletions of chromosomes 1, 2, 6, 10, 13, 17, and 21 in 91% (10/11) of cases and recurring mutations in TP53 (81.8%, n = 9/11) and PTEN (36.4%, n = 4/11). Notably, although PTEN and TP53 alterations were found in both high-grade and low-grade regions, private mutations were identified in 3 cases, indicating convergent evolution. Finally, we identified recurring RB1 mutations in 27% (n = 3) of high-grade regions leading to selective protein loss by immunohistochemistry not observed in adjacent low-grade regions. This finding was confirmed in The Cancer Genome Atlas cohort where 2 of 66 cases contained RB1 mutations and demonstrated unequivocal high-grade, nonsarcomatoid morphology. We also detected multiple chromosomal gains confined to the high-grade regions, consistent with imbalanced chromosome duplication. These findings broaden our understanding of the molecular pathogenesis of ChRCC and suggest that subclonal RB1 mutations can drive the evolution to high-grade, nonsarcomatoid ChRCC.
Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Clasificación del Tumor , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Persona de Mediana Edad , Femenino , Masculino , Anciano , Adulto , Mutación , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Anciano de 80 o más AñosRESUMEN
Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.
Asunto(s)
Carcinoma Basocelular , Neoplasias de la Próstata , Neoplasias Cutáneas , Masculino , Humanos , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Próstata/patología , Carcinoma Basocelular/genética , Carcinoma Basocelular/patología , Neoplasias Cutáneas/patología , Genómica , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores , Factores de Intercambio de Guanina NucleótidoRESUMEN
PURPOSE: We sought to examine the association of extraprostatic extension (EPE) with biochemical recurrence (BCR) separately in men with Grade Group (GG) 1 and GG2 prostate cancer (PCa) treated with radical prostatectomy. MATERIALS AND METHODS: We reviewed our institutional database of patients who underwent radical prostatectomy for PCa between 2005 and 2022 and identified patients with GG1 and GG2 disease on final pathology. Fine-Gray competing risk models with an interaction between EPE (yes vs no) and GG (GG1 vs GG2) were used to examine the relationship between disease group and BCR-free survival. RESULTS: The cohort consisted of 6309 men, of whom 169/2740 (6.2%) with GG1 disease had EPE while 1013/3569 (28.4%) with GG2 disease had EPE. Median follow-up was 4 years. BCR occurred in 400/6309 (6.3%) patients. For men with GG1, there was no statistically significant difference in BCR-free survival for men with vs without EPE (subdistribution HR = 0.88; 95% CI: 0.37-2.09). However, for GG2 patients BCR-free survival was significantly worse for those with vs without EPE (subdistribution HR = 1.97, 95% CI: 1.54-2.52). CONCLUSIONS: Although there is a subset of GG1 PCas capable of invading through the prostatic capsule, patients with GG1 PCa and EPE at prostatectomy experience similar biochemical recurrence and survival outcomes compared to GG1 patients without EPE. However, among men with GG2, EPE connotes a worse prognosis.
Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Próstata/cirugía , Próstata/patología , Prostatectomía , Clasificación del Tumor , PronósticoRESUMEN
BACKGROUND: Military Servicemembers and Veterans are at elevated risk for suicide, but rarely self-identify to their leaders or clinicians regarding their experience of suicidal thoughts. We developed an algorithm to identify posts containing suicide-related content on a military-specific social media platform. METHODS: Publicly-shared social media posts (n = 8449) from a military-specific social media platform were reviewed and labeled by our team for the presence/absence of suicidal thoughts and behaviors and used to train several machine learning models to identify such posts. RESULTS: The best performing model was a deep learning (RoBERTa) model that incorporated post text and metadata and detected the presence of suicidal posts with relatively high sensitivity (0.85), specificity (0.96), precision (0.64), F1 score (0.73), and an area under the precision-recall curve of 0.84. Compared to non-suicidal posts, suicidal posts were more likely to contain explicit mentions of suicide, descriptions of risk factors (e.g. depression, PTSD) and help-seeking, and first-person singular pronouns. CONCLUSIONS: Our results demonstrate the feasibility and potential promise of using social media posts to identify at-risk Servicemembers and Veterans. Future work will use this approach to deliver targeted interventions to social media users at risk for suicide.