RESUMEN
BACKGROUND AND AIMS: In laboratory medicine, test results are generally interpreted with 95% reference intervals but correlations between laboratory tests are usually ignored. We aimed to use hospital big data to optimize and personalize laboratory data interpretation, focusing on platelet count. MATERIAL AND METHODS: Laboratory tests were extracted from the hospital database and exploited by an algorithmic stepwise procedure. For any given laboratory test Y, an "optimized and personalized reference population" was defined by keeping only patients whose laboratory values for all Y-correlated tests fell within their own usual reference intervals, and by partitioning groups by individual-specific variables like sex and age category. The method was applied to platelet count. RESULTS: Laboratory data were recorded for 28,082 individuals. At the end of the algorithmic process, seven correlated laboratory tests were chosen, resulting in a reference sample of 159 platelet counts. A new 95 % reference interval was constructed [152-334 × 109/L], notably reduced (27.2 %) compared to conventional reference values [150-400 × 109/L]. The reference interval was validated on a sample of 2,129 patients from another downtown laboratory, emphasizing the potential transference of the hospital-derived reference limits. CONCLUSION: This method offers new perspectives in laboratory data interpretation, especially in patient screening and longitudinal follow-up.
Asunto(s)
Macrodatos , Humanos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Recuento de Plaquetas , Hospitales , Valores de Referencia , Adulto Joven , Medicina de Precisión , Algoritmos , Adolescente , Anciano de 80 o más Años , Técnicas de Laboratorio Clínico/normasRESUMEN
Cyclin-dependent protein kinases (CDKs) are key regulators of the eukaryotic cell cycle and of the eukaryotic transcription machinery. Here we report the characterization of Pfcrk-3 (Plasmodium falciparum CDK-related kinase 3; PlasmoDB identifier PFD0740w), an unusually large CDK-related protein whose kinase domain displays maximal homology to those CDKs which, in other eukaryotes, are involved in the control of transcription. The closest enzyme in Saccharomyces cerevisiae is BUR1 (bypass upstream activating sequence requirement 1), known to control gene expression through interaction with chromatin modification enzymes. Consistent with this, immunofluorescence data show that Pfcrk-3 colocalizes with histones. We show that recombinant Pfcrk-3 associates with histone H1 kinase activity in parasite extracts and that this association is detectable even if the catalytic domain of Pfcrk-3 is rendered inactive by site-directed mutagenesis, indicating that Pfcrk-3 is part of a complex that includes other protein kinases. Immunoprecipitates obtained from extracts of transgenic parasites expressing hemagglutinin (HA)-tagged Pfcrk-3 by using an anti-HA antibody displayed both protein kinase and histone deacetylase activities. Reverse genetics data show that the pfcrk-3 locus can be targeted only if the genetic modification does not cause a loss of function. Taken together, our data strongly suggest that Pfcrk-3 fulfils a crucial role in the intraerythrocytic development of P. falciparum, presumably through chromatin modification-dependent regulation of gene expression.
Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Histona Desacetilasas/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Quinasas Ciclina-Dependientes/genética , Histona Desacetilasas/genética , Humanos , Modelos Genéticos , Filogenia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , ARN Mensajero/metabolismo , TransfecciónRESUMEN
BACKGROUND: Malaria, caused by the parasitic protist Plasmodium falciparum, represents a major public health problem in the developing world. The P. falciparum genome has been sequenced, which provides new opportunities for the identification of novel drug targets. Eukaryotic protein kinases (ePKs) form a large family of enzymes with crucial roles in most cellular processes; hence malarial ePKS represent potential drug targets. We report an exhaustive analysis of the P. falciparum genomic database (PlasmoDB) aimed at identifying and classifying all ePKs in this organism. RESULTS: Using a variety of bioinformatics tools, we identified 65 malarial ePK sequences and constructed a phylogenetic tree to position these sequences relative to the seven established ePK groups. Predominant features of the tree were: (i) that several malarial sequences did not cluster within any of the known ePK groups; (ii) that the CMGC group, whose members are usually involved in the control of cell proliferation, had the highest number of malarial ePKs; and (iii) that no malarial ePK clustered with the tyrosine kinase (TyrK) or STE groups, pointing to the absence of three-component MAPK modules in the parasite. A novel family of 20 ePK-related sequences was identified and called FIKK, on the basis of a conserved amino acid motif. The FIKK family seems restricted to Apicomplexa, with 20 members in P. falciparum and just one member in some other Apicomplexan species. CONCLUSION: The considerable phylogenetic distance between Apicomplexa and other Eukaryotes is reflected by profound divergences between the kinome of malaria parasites and that of yeast or mammalian cells.
Asunto(s)
Variación Genética/genética , Plasmodium falciparum/enzimología , Proteínas Quinasas/metabolismo , Animales , Células Eucariotas/enzimología , Humanos , Malaria Falciparum/enzimología , FilogeniaRESUMEN
A gene encoding a protein kinase was identified by homology-based PCR amplification in Encephalitozoon intestinalis, a microsporidian parasite pathogenic to humans, and its orthologue has been identified by database mining in the genome of the related species E. cuniculi, whose sequence has been recently published. Phylogenetic analysis revealed that the proteins encoded by these genes are homologues of the cAMP-dependent protein kinase catalytic subunits (PKAc). Southern blot analysis indicated that the EiPKAc gene is present in two copies in the E. intestinalis genome, whereas the E. cuniculi orthologue (EcPKAc) is a single copy gene. RT-PCR data showed that the EiPKAc gene is expressed in at least one of the intracellular stages during infection of the mammalian host cell by E. intestinalis.