Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1840(7): 2192-202, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24735797

RESUMEN

BACKGROUND: Noise exposure impairs outer hair cells (OHCs). The common basis for OHC dysfunction and loss by acoustic over-stimulation is represented by reactive oxygen species (ROS) overload that may affect the membrane structural organization through generation of lipid peroxidation. METHODS: Here we investigated in OHC different functional zones the mechanisms linking metabolic functional state (NAD(P)H intracellular distribution) to the generation of lipid peroxides and to the physical state of membranes by two photon fluorescence microscopy. RESULTS: In OHCs of control animals, a more oxidized NAD(P)H redox state is associated to a less fluid plasma membrane structure. Acoustic trauma induces a topologically differentiated NAD(P)H oxidation in OHC rows, which is damped between 1 and 6h. Peroxidation occurs after ~4h from noise insult, while ROS are produced in the first 0.2h and damage cells for a period of time after noise exposure has ended (~7.5h) when a decrease of fluidity of OHC plasma membrane occurs. OHCs belonging to inner rows, characterized by a lower metabolic activity with respect to other rows, show less severe metabolic impairment. CONCLUSIONS: Our data indicate that plasma membrane fluidity is related to NAD(P)H redox state and lipid peroxidation in hair cells. GENERAL SIGNIFICANCE: Our results could pave the way for therapeutic intervention targeting the onset of redox umbalance.


Asunto(s)
Membrana Celular/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Fluidez de la Membrana , Ruido/efectos adversos , Animales , Oído Externo/metabolismo , Oído Externo/patología , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Peroxidación de Lípido , NADP/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
J Neurosci ; 33(9): 4011-23, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23447610

RESUMEN

This study addresses the relationship between cochlear oxidative damage and auditory cortical injury in a rat model of repeated noise exposure. To test the effect of increased antioxidant defenses, a water-soluble coenzyme Q10 analog (Qter) was used. We analyzed auditory function, cochlear oxidative stress, morphological alterations in auditory cortices and cochlear structures, and levels of coenzymes Q9 and Q10 (CoQ9 and CoQ10, respectively) as indicators of endogenous antioxidant capability. We report three main results. First, hearing loss and damage in hair cells and spiral ganglion was determined by noise-induced oxidative stress. Second, the acoustic trauma altered dendritic morphology and decreased spine number of II-III and V-VI layer pyramidal neurons of auditory cortices. Third, the systemic administration of the water-soluble CoQ10 analog reduced oxidative-induced cochlear damage, hearing loss, and cortical dendritic injury. Furthermore, cochlear levels of CoQ9 and CoQ10 content increased. These findings indicate that antioxidant treatment restores auditory cortical neuronal morphology and hearing function by reducing the noise-induced redox imbalance in the cochlea and the deafferentation effects upstream the acoustic pathway.


Asunto(s)
Cóclea/patología , Pérdida Auditiva Provocada por Ruido , Estrés Oxidativo/fisiología , Ubiquinona/uso terapéutico , Corteza Visual/patología , Fascículo Atrioventricular Accesorio , Estimulación Acústica , Aldehídos/metabolismo , Análisis de Varianza , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Vías Auditivas/efectos de los fármacos , Vías Auditivas/patología , Vías Auditivas/ultraestructura , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/etiología , Lesiones Encefálicas/patología , Cóclea/fisiopatología , Modelos Animales de Enfermedad , Etidio/análogos & derivados , Etidio/metabolismo , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/ultraestructura , Pérdida Auditiva Provocada por Ruido/complicaciones , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/patología , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Tinción con Nitrato de Plata , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/farmacología , Corteza Visual/efectos de los fármacos
3.
Otol Neurotol ; 39(3): 378-386, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29424820

RESUMEN

HYPOTHESIS: Trans-tympanic Rosmarinic Acid (RA), as compared with the systemic administration, protects against noise-induced auditory hair cell and hearing losses in rats in vivo. BACKGROUND: ROS production, lipoperoxidative damage, and an imbalance of antioxidant defences play a significant role in noise-induced hearing loss. Several molecules with antioxidant properties have been tested to restore redox homeostasis; however, drug delivery system represents a challenge for their effectiveness. In our model, acute and intense noise exposure induces hearing loss, hair cell death, and oxidative stress, with an increase in superoxide production and over-expression of lipid peroxidation in cochlear structures. METHODS: RA was administrated in male Wistar rats by trans-tympanic (20 µl) and systemic (10 mg/kg) modality. In systemic administration, RA was injected 1 hour before noise exposure and once daily for the following 3 days. ABRs were measured before and at days 1, 3, 7, and 30 after noise exposure. Rhodamine-phalloidin staining, dihydroethidium and 8-isoprostane immunostainings were performed to assess and quantify outer hair cells loss, superoxide production, and lipid peroxidation in the different experimental groups. RESULTS: Systemic RA administration significantly decreased noise-induced hearing loss and the improvement of auditory function was paralleled by a significant reduction in cochlear oxidative stress. The trans-tympanic modality of drug administration showed a similar degree of protection both at the functional and morphological levels. CONCLUSION: The effectiveness of RA given via trans-tympanic injection could be interesting for the future application of this minimally-invasive procedure in the treatment of ROS-induced hearing loss.


Asunto(s)
Antioxidantes/farmacología , Cinamatos/farmacología , Depsidos/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Pérdida Auditiva Provocada por Ruido/fisiopatología , Animales , Modelos Animales de Enfermedad , Audición/efectos de los fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Ácido Rosmarínico
4.
Front Cell Neurosci ; 8: 334, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25368551

RESUMEN

Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASCs transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real-time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF, and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASCs' implantation. These results indicated that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantation, providing an original proof of principle, which could pave the way for further developments of ASC-based treatments of deafness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA